EEG feature selection for ADHD detection in children
Attention deficit and hyperactivity disorder (ADHD) is a medical condition that affects approximately 7% of children worldwide. The diagnosis of ADHD can be done using psychological tests and electroencephalography (EEG). However, the variability and complexity of EEG signals affects its diagnostic...
- Autores:
-
Mercado-Aguirre, Isabela M.
Gutierrez-Ruiz, Karol P.
Contreras Ortiz, Sonia Helena
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/9970
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/9970
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11583/115830S/EEG-feature-selection-for-ADHD-detection-in-children/10.1117/12.2579625.short?SSO=1
- Palabra clave:
- Bioinformatics
Classification (of information)
Electroencephalography
Electrophysiology
Entropy
Feature extraction
Power spectrum
Regression analysisTesting
LEMB
- Rights
- closedAccess
- License
- http://purl.org/coar/access_right/c_14cb
id |
UTB2_baa27f7166ed08a735487637759b608e |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/9970 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
EEG feature selection for ADHD detection in children |
title |
EEG feature selection for ADHD detection in children |
spellingShingle |
EEG feature selection for ADHD detection in children Bioinformatics Classification (of information) Electroencephalography Electrophysiology Entropy Feature extraction Power spectrum Regression analysisTesting LEMB |
title_short |
EEG feature selection for ADHD detection in children |
title_full |
EEG feature selection for ADHD detection in children |
title_fullStr |
EEG feature selection for ADHD detection in children |
title_full_unstemmed |
EEG feature selection for ADHD detection in children |
title_sort |
EEG feature selection for ADHD detection in children |
dc.creator.fl_str_mv |
Mercado-Aguirre, Isabela M. Gutierrez-Ruiz, Karol P. Contreras Ortiz, Sonia Helena |
dc.contributor.author.none.fl_str_mv |
Mercado-Aguirre, Isabela M. Gutierrez-Ruiz, Karol P. Contreras Ortiz, Sonia Helena |
dc.subject.keywords.spa.fl_str_mv |
Bioinformatics Classification (of information) Electroencephalography Electrophysiology Entropy Feature extraction Power spectrum Regression analysisTesting |
topic |
Bioinformatics Classification (of information) Electroencephalography Electrophysiology Entropy Feature extraction Power spectrum Regression analysisTesting LEMB |
dc.subject.armarc.none.fl_str_mv |
LEMB |
description |
Attention deficit and hyperactivity disorder (ADHD) is a medical condition that affects approximately 7% of children worldwide. The diagnosis of ADHD can be done using psychological tests and electroencephalography (EEG). However, the variability and complexity of EEG signals affects its diagnostic utility. The purpose of this work is to identify relevant features of EEG signals from children diagnosed with ADHD and control cases for their classification. A total of 47 children were included in the study (22 with ADHD and 25 in the control group). EEG of cognitive evoked potentials were preprocessed using wavelet filtering and synchronized averaging. Then, fourteen features were calculated in signals from four channels (F3, AF3, F4 and AF4), including evoked potentials, power spectrum, entropy, chaos, bicoherence measures, and prominent peaks. For feature selection, the algorithms PCA, hybrid stepwise regression, ridge regression, and correlation values were evaluated. It was evidenced that evoked potentials have a relative high level of importance, as well as the prominent peaks. On the other hand, the values of chaos and bicoherence measures, along with the gender, are the least representative features. These results are consistent among the four feature selection algorithms. In conclusion, 9 of the 14 features are representative of the data set and were used for the classification stage of this work. |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020-11-03 |
dc.date.accessioned.none.fl_str_mv |
2021-02-09T22:05:51Z |
dc.date.available.none.fl_str_mv |
2021-02-09T22:05:51Z |
dc.date.submitted.none.fl_str_mv |
2021-02-09 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/lecture |
dc.type.hasversion.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_8544 |
status_str |
publishedVersion |
dc.identifier.citation.spa.fl_str_mv |
Isabela M. Mercado-Aguirre, Karol P. Gutierrez-Ruiz, and Sonia H. Contreras-Ortiz "EEG feature selection for ADHD detection in children", Proc. SPIE 11583, 16th International Symposium on Medical Information Processing and Analysis, 115830S (3 November 2020); https://doi.org/10.1117/12.2579625 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/9970 |
dc.identifier.url.none.fl_str_mv |
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11583/115830S/EEG-feature-selection-for-ADHD-detection-in-children/10.1117/12.2579625.short?SSO=1 |
dc.identifier.doi.none.fl_str_mv |
10.1117/12.2579625 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Universidad Tecnológica de Bolívar |
identifier_str_mv |
Isabela M. Mercado-Aguirre, Karol P. Gutierrez-Ruiz, and Sonia H. Contreras-Ortiz "EEG feature selection for ADHD detection in children", Proc. SPIE 11583, 16th International Symposium on Medical Information Processing and Analysis, 115830S (3 November 2020); https://doi.org/10.1117/12.2579625 10.1117/12.2579625 Universidad Tecnológica de Bolívar Repositorio Universidad Tecnológica de Bolívar |
url |
https://hdl.handle.net/20.500.12585/9970 https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11583/115830S/EEG-feature-selection-for-ADHD-detection-in-children/10.1117/12.2579625.short?SSO=1 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_14cb |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/closedAccess |
eu_rights_str_mv |
closedAccess |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_14cb |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.place.spa.fl_str_mv |
Cartagena de Indias |
dc.source.spa.fl_str_mv |
Proceedings Volume 11583, 16th International Symposium on Medical Information Processing and Analysis; 115830S (2020) |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/9970/1/133.pdf https://repositorio.utb.edu.co/bitstream/20.500.12585/9970/2/license.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/9970/3/133.pdf.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/9970/4/133.pdf.jpg |
bitstream.checksum.fl_str_mv |
f3c77ec99b8f3846d303f260187266de e20ad307a1c5f3f25af9304a7a7c86b6 37845e279c558dcbac518a15088055e8 09916f1948cff2f5efdcc3dd713964b0 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021786452361216 |
spelling |
Mercado-Aguirre, Isabela M.6ec184eb-e974-4ed2-98f2-a72699f371f7Gutierrez-Ruiz, Karol P.9431cc3d-7ebb-481c-8916-3186c0de5980Contreras Ortiz, Sonia Helenad8ce7bb4-34ec-40b2-9bbc-76db7004d4212021-02-09T22:05:51Z2021-02-09T22:05:51Z2020-11-032021-02-09Isabela M. Mercado-Aguirre, Karol P. Gutierrez-Ruiz, and Sonia H. Contreras-Ortiz "EEG feature selection for ADHD detection in children", Proc. SPIE 11583, 16th International Symposium on Medical Information Processing and Analysis, 115830S (3 November 2020); https://doi.org/10.1117/12.2579625https://hdl.handle.net/20.500.12585/9970https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11583/115830S/EEG-feature-selection-for-ADHD-detection-in-children/10.1117/12.2579625.short?SSO=110.1117/12.2579625Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarAttention deficit and hyperactivity disorder (ADHD) is a medical condition that affects approximately 7% of children worldwide. The diagnosis of ADHD can be done using psychological tests and electroencephalography (EEG). However, the variability and complexity of EEG signals affects its diagnostic utility. The purpose of this work is to identify relevant features of EEG signals from children diagnosed with ADHD and control cases for their classification. A total of 47 children were included in the study (22 with ADHD and 25 in the control group). EEG of cognitive evoked potentials were preprocessed using wavelet filtering and synchronized averaging. Then, fourteen features were calculated in signals from four channels (F3, AF3, F4 and AF4), including evoked potentials, power spectrum, entropy, chaos, bicoherence measures, and prominent peaks. For feature selection, the algorithms PCA, hybrid stepwise regression, ridge regression, and correlation values were evaluated. It was evidenced that evoked potentials have a relative high level of importance, as well as the prominent peaks. On the other hand, the values of chaos and bicoherence measures, along with the gender, are the least representative features. These results are consistent among the four feature selection algorithms. In conclusion, 9 of the 14 features are representative of the data set and were used for the classification stage of this work.application/pdfengProceedings Volume 11583, 16th International Symposium on Medical Information Processing and Analysis; 115830S (2020)EEG feature selection for ADHD detection in childreninfo:eu-repo/semantics/lectureinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_8544http://purl.org/coar/version/c_970fb48d4fbd8a85BioinformaticsClassification (of information)ElectroencephalographyElectrophysiologyEntropyFeature extractionPower spectrumRegression analysisTestingLEMBinfo:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbCartagena de IndiasInvestigadoresVásquez, J., Cárdenas, E.M., Feria, M., Benjet, C., Palacios, L., de la Peña, F. Guía clínica para el trastorno por déficit de atención e hiperactividad (2010) DF Guías Clínicas Para La Atención De Trastornos Mentales. Cited 5 times. Berenzon S, Del Bosque J, Alfaro J, Medina-Mora ME. México, Instituto Nacional de Psiquiatría Ramón de la FuMental Health, N.I. (2009) Trastorno De Déficit De Atención E Hiperactividad of publicación STR 09-3572 Accessed 23-July-2018Chen, H., Chen, W., Song, Y., Sun, L., Li, X. EEG characteristics of children with attention-deficit/hyperactivity disorder (2019) Neuroscience, 406, pp. 444-456. Cited 7 times. www.elsevier.com/locate/neuroscience doi: 10.1016/j.neuroscience.2019.03.048Mohammadi, M.R., Khaleghi, A., Nasrabadi, A.M., Rafieivand, S., Begol, M., Zarafshan, H. EEG classification of ADHD and normal children using non-linear features and neural network (2016) Biomedical Engineering Letters, 6 (2), pp. 66-73. Cited 43 times. http://www.springer.com/engineering/biomedical+eng/journal/13534 doi: 10.1007/s13534-016-0218-2Ghassemi, F., Hassan, M., Tehrani-Doost, M., Abootalebi, V. Using non-linear features of EEG for ADHD/normal participants' classification (Open Access) (2012) Procedia - Social and Behavioral Sciences, 32, pp. 148-152. Cited 20 times. http://sciencedirect.utb.elogim.com/science/journal/18770428/1 doi: 10.1016/j.sbspro.2012.01.024Nazhvani, A.D., Boostani, R., Afrasiabi, S., Sadatnezhad, K. Classification of ADHD and BMD patients using visual evoked potential (2013) Clinical Neurology and Neurosurgery, 115 (11), pp. 2329-2335. Cited 22 times. doi: 10.1016/j.clineuro.2013.08.009Öztoprak, H., Toycan, M., Alp, Y.K., Arıkan, O., Doğutepe, E., Karakaş, S. Machine-based classification of ADHD and nonADHD participants using time/frequency features of event-related neuroelectric activity (Open Access) (2017) Clinical Neurophysiology, 128 (12), pp. 2400-2410. Cited 10 times. www.elsevier.com/inca/publications/store/6/0/1/5/2/8 doi: 10.1016/j.clinph.2017.09.105Badcock, N.A., Mousikou, P., Mahajan, Y., De Lissa, P., Thie, J., McArthur, G. Validation of the Emotiv EPOC® EEG gaming systemfor measuring research quality auditory ERPs (Open Access) (2013) PeerJ, 2013 (1), art. no. e38. Cited 193 times. https://peerj.com/articles/38.pdf doi: 10.7717/peerj.38Adeli, H., Zhou, Z., Dadmehr, N. Analysis of EEG records in an epileptic patient using wavelet transform (2003) Journal of Neuroscience Methods, 123 (1), pp. 69-87. Cited 806 times. doi: 10.1016/S0165-0270(02)00340-0Markazi, S.A., Qazi, S., Stergioulas, L.S., Ramchurn, A., Bunce, D. Wavelet filtering of the P300 component in event-related potentials (2006) Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings, art. no. 4029661, pp. 1719-1722. Cited 16 times. ISBN: 1424400325; 978-142440032-4 doi: 10.1109/IEMBS.2006.260691Subasi, A. EEG signal classification using wavelet feature extraction and a mixture of expert model (2007) Expert Systems with Applications, 32 (4), pp. 1084-1093. Cited 746 times. doi: 10.1016/j.eswa.2006.02.005Markazi, S.A., Qazi, S., Stergioulas, L.S., Ramchurn, A., Bunce, D. Wavelet filtering of the P300 component in event-related potentials (2006) Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings, art. no. 4029661, pp. 1719-1722. Cited 16 times. ISBN: 1424400325; 978-142440032-4 doi: 10.1109/IEMBS.2006.260691Comerchero, M.D., Polich, J. P3a and P3b from typical auditory and visual stimuli (1999) Clinical Neurophysiology, 110 (1), pp. 24-30. Cited 340 times. doi: 10.1016/S0168-5597(98)00033-1Donchin, E., Ritter, W., McCallum, W.C. Cognitive psychophysiology: The endogenous components of the erp (1978) Event-Related Brain Potentials in Man, 349, p. 411. Cited 708 times.Rangayyan, R.M. Biomedical Signal Analysis, p. 717.Challis, R.E., Kitney, R.I. Biomedical signal processing (in four parts) - Part 2 The frequency transforms and their inter-relationships (1991) Medical & Biological Engineering & Computing, 29 (1), pp. 1-17. Cited 50 times. doi: 10.1007/BF02446290Barry, R.J., Clarke, A.R., Johnstone, S.J., McCarthy, R., Selikowitz, M. Electroencephalogram θ/β Ratio and Arousal in Attention-Deficit/Hyperactivity Disorder: Evidence of Independent Processes (2009) Biological Psychiatry, 66 (4), pp. 398-401. Cited 114 times. doi: 10.1016/j.biopsych.2009.04.027Pincus, S.M. Approximate entropy as a measure of system complexity (Open Access) (1991) Proceedings of the National Academy of Sciences of the United States of America, 88 (6), pp. 2297-2301. Cited 3823 times. www.pnas.org doi: 10.1073/pnas.88.6.2297Pincus, S.M. Approximate entropy as a measure of irregularity for psychiatric serial metrics (2006) Bipolar Disorders, 8 (5 I), pp. 430-440. Cited 111 times. doi: 10.1111/j.1399-5618.2006.00375.xSohn, H., Kim, I., Lee, W., Peterson, B.S., Hong, H., Chae, J.-H., Hong, S., (...), Jeong, J. Linear and non-linear EEG analysis of adolescents with attention-deficit/hyperactivity disorder during a cognitive task (2010) Clinical Neurophysiology, 121 (11), pp. 1863-1870. Cited 56 times. doi: 10.1016/j.clinph.2010.04.007Richman, J.S., Moorman, J.R. Physiological time-series analysis using approximate and sample entropy (Open Access) (2000) American Journal of Physiology - Heart and Circulatory Physiology, 278 (6 47-6), pp. H2039-H2049. Cited 4167 times. https://www.physiology.org/loi/ajpheart doi: 10.1152/ajpheart.2000.278.6.h2039Swiderski, B., Osowski, S., Rysz, A. Lyapunov exponent of EEG signal for epileptic seizure characterization (2005) Proceedings of the 2005 European Conference on Circuit Theory and Design, 2, art. no. 1523016, pp. 153-156. Cited 24 times. ISBN: 0780390660; 978-078039066-9 doi: 10.1109/ECCTD.2005.1523016IEEE (2009). 10.1109/9780470545379.ch12Lai, Y.-C., Harrison, M.A.F., Frei, M.G., Osorio, I. Inability of Lyapunov Exponents to Predict Epileptic Seizures (Open Access) (2003) Physical Review Letters, 91 (6). Cited 63 times. doi: 10.1103/PhysRevLett.91.068102BenSaida, A. (2018) Chaos Test JanLee, K. (2012) Fast Approximate Entropy. Cited 2 times. MarLee, K. (2012) Sample Entropy. Cited 8 times. MarLi, D., Li, X., Hagihira, S., Sleigh, J.W. Cross-frequency coupling during isoflurane anaesthesia as revealed by electroencephalographic harmonic wavelet bicoherence (Open Access) (2013) British Journal of Anaesthesia, 110 (3), pp. 409-419. Cited 15 times. https://www.journals.elsevier.com/british-journal-of-anaesthesia doi: 10.1093/bja/aes397Shils, J.L., Litt, M., Skolnick, B.E., Stecker, M.M. Bispectral analysis of visual interactions in humans (1996) Electroencephalography and Clinical Neurophysiology, 98 (2), pp. 113-125. Cited 55 times. doi: 10.1016/0013-4694(95)00230-8Swami, A. (2003) Hosa - Higher Order Spectral Analysis Toolbox. Cited 154 times. FebAbdi, H., Williams, L.J. Principal component analysis (2010) Wiley Interdisciplinary Reviews: Computational Statistics, 2 (4), pp. 433-459. Cited 3498 times. http://www3.interscience.wiley.com/cgi-bin/fulltext/123569814/PDFSTART doi: 10.1002/wics.101Song, F., Guo, Z., Mei, D. Feature selection using principal component analysis (2010) Proceedings - 2010 International Conference on System Science, Engineering Design and Manufacturing Informatization, ICSEM 2010, 1, art. no. 5640135, pp. 27-30. Cited 134 times. ISBN: 978-076954223-2 doi: 10.1109/ICSEM.2010.14Faraway, J.J. (2005) Linear Models with R. Texts in Statistical Science, 63.http://purl.org/coar/resource_type/c_c94fORIGINAL133.pdf133.pdfAbstractapplication/pdf64231https://repositorio.utb.edu.co/bitstream/20.500.12585/9970/1/133.pdff3c77ec99b8f3846d303f260187266deMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/9970/2/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD52TEXT133.pdf.txt133.pdf.txtExtracted texttext/plain1509https://repositorio.utb.edu.co/bitstream/20.500.12585/9970/3/133.pdf.txt37845e279c558dcbac518a15088055e8MD53THUMBNAIL133.pdf.jpg133.pdf.jpgGenerated Thumbnailimage/jpeg59737https://repositorio.utb.edu.co/bitstream/20.500.12585/9970/4/133.pdf.jpg09916f1948cff2f5efdcc3dd713964b0MD5420.500.12585/9970oai:repositorio.utb.edu.co:20.500.12585/99702023-05-25 15:46:50.452Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo= |