Robust automated reading of the skin prick test via 3D imaging and parametric surface fitting

The conventional reading of the skin prick test (SPT) for diagnosing allergies is prone to inter- and intra-observer variations. Drawing the contours of the skin wheals from the SPT and scanning them for computer processing is cumbersome. However, 3D scanning technology promises the best results in...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/9240
Acceso en línea:
https://hdl.handle.net/20.500.12585/9240
Palabra clave:
Allergen
Adult
Allergic reaction
Article
Autoanalysis
Blomia tropicalis
Controlled study
Dander
Dermatophagoides farinae
Dermatophagoides pteronyssinus
Diagnostic accuracy
Diagnostic test accuracy study
Female
Human
Image reconstruction
Male
Periplaneta americana
Prick test
Reproducibility
Skin manifestation
Three dimensional imaging
Multi-TestRPC
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_b9de92b9f8e2234646cd83b5b3623f1d
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/9240
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Robust automated reading of the skin prick test via 3D imaging and parametric surface fitting
title Robust automated reading of the skin prick test via 3D imaging and parametric surface fitting
spellingShingle Robust automated reading of the skin prick test via 3D imaging and parametric surface fitting
Allergen
Adult
Allergic reaction
Article
Autoanalysis
Blomia tropicalis
Controlled study
Dander
Dermatophagoides farinae
Dermatophagoides pteronyssinus
Diagnostic accuracy
Diagnostic test accuracy study
Female
Human
Image reconstruction
Male
Periplaneta americana
Prick test
Reproducibility
Skin manifestation
Three dimensional imaging
Multi-TestRPC
title_short Robust automated reading of the skin prick test via 3D imaging and parametric surface fitting
title_full Robust automated reading of the skin prick test via 3D imaging and parametric surface fitting
title_fullStr Robust automated reading of the skin prick test via 3D imaging and parametric surface fitting
title_full_unstemmed Robust automated reading of the skin prick test via 3D imaging and parametric surface fitting
title_sort Robust automated reading of the skin prick test via 3D imaging and parametric surface fitting
dc.subject.keywords.none.fl_str_mv Allergen
Adult
Allergic reaction
Article
Autoanalysis
Blomia tropicalis
Controlled study
Dander
Dermatophagoides farinae
Dermatophagoides pteronyssinus
Diagnostic accuracy
Diagnostic test accuracy study
Female
Human
Image reconstruction
Male
Periplaneta americana
Prick test
Reproducibility
Skin manifestation
Three dimensional imaging
Multi-TestRPC
topic Allergen
Adult
Allergic reaction
Article
Autoanalysis
Blomia tropicalis
Controlled study
Dander
Dermatophagoides farinae
Dermatophagoides pteronyssinus
Diagnostic accuracy
Diagnostic test accuracy study
Female
Human
Image reconstruction
Male
Periplaneta americana
Prick test
Reproducibility
Skin manifestation
Three dimensional imaging
Multi-TestRPC
description The conventional reading of the skin prick test (SPT) for diagnosing allergies is prone to inter- and intra-observer variations. Drawing the contours of the skin wheals from the SPT and scanning them for computer processing is cumbersome. However, 3D scanning technology promises the best results in terms of accuracy, fast acquisition, and processing. In this work, we present a wide-field 3D imaging system for the 3D reconstruction of the SPT, and we propose an automated method for the measurement of the skin wheals. The automated measurement is based on pyramidal decomposition and parametric 3D surface fitting for estimating the sizes of the wheals directly. We proposed two parametric models for the diameter estimation. Model 1 is based on an inverted Elliptical Paraboloid function, and model 2 on a super-Gaussian function. The accuracy of the 3D imaging system was evaluated with validation objects obtaining transversal and depth accuracies within ± 0.1 mm and ± 0.01 mm, respectively. We tested the method on 80 SPTs conducted in volunteer subjects, which resulted in 61 detected wheals. We analyzed the accuracy of the models against manual reference measurements from a physician and obtained that the parametric model 2 on average yields diameters closer to the reference measurements (model 1: -0.398 mm vs. model 2: -0.339 mm) with narrower 95% limits of agreement (model 1: [-1.58, 0.78] mm vs. model 2: [-1.39, 0.71] mm) in a Bland-Altman analysis. In one subject, we tested the reproducibility of the method by registering the forearm under five different poses obtaining a maximum coefficient of variation of 5.24% in the estimated wheal diameters. The proposed method delivers accurate and reproducible measurements of the SPT. © 2019 Pineda et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
publishDate 2019
dc.date.issued.none.fl_str_mv 2019
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:41:25Z
dc.date.available.none.fl_str_mv 2020-03-26T16:41:25Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.hasVersion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Pineda J., Vargas R., Romero L.A., Marrugo J., Meneses J. y Marrugo A.G. (2019) Robust automated reading of the skin prick test via 3D imaging and parametric surface fitting. PLoS ONE; Vol. 14, Núm. 10
dc.identifier.issn.none.fl_str_mv 19326203
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/9240
dc.identifier.doi.none.fl_str_mv 10.1371/journal.pone.0223623
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 57192270016
57117284600
36142156300
6507678324
7004348301
24329839300
identifier_str_mv Pineda J., Vargas R., Romero L.A., Marrugo J., Meneses J. y Marrugo A.G. (2019) Robust automated reading of the skin prick test via 3D imaging and parametric surface fitting. PLoS ONE; Vol. 14, Núm. 10
19326203
10.1371/journal.pone.0223623
Universidad Tecnológica de Bolívar
Repositorio UTB
57192270016
57117284600
36142156300
6507678324
7004348301
24329839300
url https://hdl.handle.net/20.500.12585/9240
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessRights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Public Library of Science
publisher.none.fl_str_mv Public Library of Science
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85073657466&doi=10.1371%2fjournal.pone.0223623&partnerID=40&md5=ccacdcda607a2c484a1f971f08da2268
Scopus2-s2.0-85073657466
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/9240/1/doiorg101371journalpone0223623.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/9240/4/doiorg101371journalpone0223623.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/9240/5/doiorg101371journalpone0223623.pdf.jpg
bitstream.checksum.fl_str_mv 246a7905c1044b075aa9898cc6740390
a6b9bdcb36a00a2b388819b3d29767ba
76791f46a2b5af3ca08648cd5df2e194
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021724565405696
spelling 2020-03-26T16:41:25Z2020-03-26T16:41:25Z2019Pineda J., Vargas R., Romero L.A., Marrugo J., Meneses J. y Marrugo A.G. (2019) Robust automated reading of the skin prick test via 3D imaging and parametric surface fitting. PLoS ONE; Vol. 14, Núm. 1019326203https://hdl.handle.net/20.500.12585/924010.1371/journal.pone.0223623Universidad Tecnológica de BolívarRepositorio UTB5719227001657117284600361421563006507678324700434830124329839300The conventional reading of the skin prick test (SPT) for diagnosing allergies is prone to inter- and intra-observer variations. Drawing the contours of the skin wheals from the SPT and scanning them for computer processing is cumbersome. However, 3D scanning technology promises the best results in terms of accuracy, fast acquisition, and processing. In this work, we present a wide-field 3D imaging system for the 3D reconstruction of the SPT, and we propose an automated method for the measurement of the skin wheals. The automated measurement is based on pyramidal decomposition and parametric 3D surface fitting for estimating the sizes of the wheals directly. We proposed two parametric models for the diameter estimation. Model 1 is based on an inverted Elliptical Paraboloid function, and model 2 on a super-Gaussian function. The accuracy of the 3D imaging system was evaluated with validation objects obtaining transversal and depth accuracies within ± 0.1 mm and ± 0.01 mm, respectively. We tested the method on 80 SPTs conducted in volunteer subjects, which resulted in 61 detected wheals. We analyzed the accuracy of the models against manual reference measurements from a physician and obtained that the parametric model 2 on average yields diameters closer to the reference measurements (model 1: -0.398 mm vs. model 2: -0.339 mm) with narrower 95% limits of agreement (model 1: [-1.58, 0.78] mm vs. model 2: [-1.39, 0.71] mm) in a Bland-Altman analysis. In one subject, we tested the reproducibility of the method by registering the forearm under five different poses obtaining a maximum coefficient of variation of 5.24% in the estimated wheal diameters. The proposed method delivers accurate and reproducible measurements of the SPT. © 2019 Pineda et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Departamento Administrativo de Ciencia, Tecnología e Innovación (COLCIENCIAS), COLCIENCIAS: 538871552485 C2018P018, C2018P005This study was supported by Colciencias (www.colciencias.gov.co, Grant 538871552485) and by Universidad Tecnol?gica de Bolivar (www.utb.edu.co, Grants C2018P005 and C2018P018), Colombia.Recurso electrónicoapplication/pdfengPublic Library of Sciencehttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2https://www.scopus.com/inward/record.uri?eid=2-s2.0-85073657466&doi=10.1371%2fjournal.pone.0223623&partnerID=40&md5=ccacdcda607a2c484a1f971f08da2268Scopus2-s2.0-85073657466Robust automated reading of the skin prick test via 3D imaging and parametric surface fittinginfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1AllergenAdultAllergic reactionArticleAutoanalysisBlomia tropicalisControlled studyDanderDermatophagoides farinaeDermatophagoides pteronyssinusDiagnostic accuracyDiagnostic test accuracy studyFemaleHumanImage reconstructionMalePeriplaneta americanaPrick testReproducibilitySkin manifestationThree dimensional imagingMulti-TestRPCPineda J.Vargas R.Romero L.A.Marrugo J.Meneses J.Marrugo A.G.Buyuktiryaki, B., Sahiner, U.M., Karabulut, E., Cavkaytar, O., Tuncer, A., Sekerel, B.E., Optimizing the use of a skin prick test device on children (2013) International Archives of Allergy and Immunology, 162 (1), pp. 65-70. , https://doi.org/10.1159/000350788, PMID: 23816800Venter, C., Arshad, S.H., Epidemiology of food allergy (2011) Pediatric Clinics of North America, 58 (2), pp. 327-349. , https://doi.org/10.1016/j.pcl.2011.02.011, PMID: 21453805Marrugo, J., Hernández, L., Villalba, V., Prevalence of self-reported food allergy in Cartagena (Colombia) population (2008) Allergologia Et Immunopathologia, 36 (6), pp. 320-324. , https://doi.org/10.1016/S0301-0546(08)75863-4, PMID: 19150030Tang, M.L.K., Mullins, R.J., Food allergy: Is prevalence increasing? (2017) Internal Medicine Journal, 47 (3), pp. 256-261. , https://doi.org/10.1111/imj.13362, PMID: 28260260Andersen, H.H., Lundgaard, A.C., Petersen, A.S., Hauberg, L.E., Sharma, N., Hansen, S.D., The lancet weight determines wheal diameter in response to skin prick testing with histamine (2016) PLoS ONE, 11 (5). , https://doi.org/10.1371/journal.pone.0156211, PMID: 27213613Pijnenborg, H., Nilsson, L., Dreborg, S., Estimation of skin prick test reactions with a scanning program (1996) Allergy, 51 (11), pp. 782-788. , PMID: 8947335Valk, J.P.M., Van Wijk, R.G., Hoorn, E., Groenendijk, L., Groenendijk, I.M., Jong, N.W., Measurement and interpretation of skin prick test results (2016) Clinical and Translational Allergy, pp. 1-5Wöhrl, S., Vigl, K., Binder, M., Stingl, G., Prinz, M., Automated measurement of skin prick tests: An advance towards exact calculation of wheal size (2006) Experimental Dermatology, 15 (2), pp. 119-124. , https://doi.org/10.1111/j.1600-0625.2006.00388.x, PMID: 16433683Konstantinou, G.N., Bousquet, P.J., Zuberbier, T., Papadopoulos, N.G., The longest wheal diameter is the optimal measurement for the evaluation of skin prick tests (2010) International Archives of Allergy and Immunology, 151 (4), pp. 343-345. , https://doi.org/10.1159/000250443, PMID: 19851076Prinz, M., Vigl, K., Wöhrl, S., Automatic measurement of skin wheals provoked by skin prick tests (2005) Studies in Health Technology and Informatics, 116, pp. 441-446. , PMID: 16160297Heinzerling, L., Mari, A., Bergmann, K.C., Bresciani, M., Burbach, G., Darsow, U., The skin prick test—European standards (2013) Clinical and Translational Allergy, 3 (1), p. 3. , https://doi.org/10.1186/2045-7022-3-3, PMID: 23369181McCann, W.A., Ownby, D.R., The reproducibility of the allergy skin test scoring and interpretation by board-certified/board-eligible allergists (2002) Annals of Allergy, Asthma and Immunology, 89 (4), pp. 368-371. , https://doi.org/10.1016/S1081-1206(10)62037-6, PMID: 12392380Bulan, O., Improved wheal detection from skin prick test images (2014) IS&T/SPIE Electronic Imaging, p. 90240J. , Niel KS, Bingham PR, editors. SPIEHuttunen, H., Ryynänen, J.P., Forsvik, H., Voipio, V., Kikuchi, H., Kernel Fisher discriminant and elliptic shape model for automatic measurement of allergic reactions (2011) Lecture Notes in Computer Science, pp. 764-773. , Berlin, Heidelberg: Springer Berlin HeidelbergJusto, X., Díaz, I., Gil, J.J., Gastaminza, G., Prick test: Evolution towards automated reading (2016) Allergy, 71 (8), pp. 1095-1102. , https://doi.org/10.1111/all.12921, PMID: 27100940Haleem, A., Javaid, M., 3D scanning applications in medical field: A literature-based review (2019) Clinical Epidemiology and Global Health, 7 (2), pp. 199-210. , https://doi.org/10.1016/j.cegh.2018.05.006Laloš, J., Mrak, M., Pavlovčič, U., Jezeršek, M., Handheld optical system for skin topography measurement using Fourier transform profilometry (2015) Strojniški Vestnik—Journal of Mechanical Engineering, 61 (5), pp. 285-291Rey-Barroso, L., Burgos-Fernández, F.J., Ares, M., Royo, S., Puig, S., Malvehy, J., Morphological study of skin cancer lesions through a 3D scanner based on fringe projection and machine learning (2019) Biomedical Optics Express, 10 (7), p. 3404. , https://doi.org/10.1364/BOE.10.003404, PMID: 31467785Justo, X., Díaz, I., Gil, J.J., Gastaminza, G., Medical device for automated prick test reading (2018) IEEE Journal of Biomedical and Health Informatics, 22 (3), pp. 895-903. , https://doi.org/10.1109/JBHI.2017.2680840, PMID: 28362597Dos Santos, R.V., Mlynek, A., Lima, H.C., Martus, P., Maurer, M., Beyond flat weals: Validation of a three-dimensional imaging technology that will improve skin allergy research (2008) Clinical and Experimental Dermatology, 33 (6), pp. 772-775. , https://doi.org/10.1111/j.1365-2230.2008.02897.x, PMID: 18681868Verdaasdonk, R.M., Ploeger, J., Den Blanken, M., Liberton, N., Rustemeyer, T., Wolff, J., The use of 3D scanners for skin prick allergy testing: A feasibility study (Conference Presentation) (2018) Photonics in Dermatology and Plastic Surgery 2018, p. 104670B. , 10467 International Society for Optics and PhotonicsRoques, C., Téot, L., Frasson, N., Meaume, S., PrimoS: An optical system that produces three-dimensional measurements of skin surfaces (2003) Journal of Wound Care, 12 (9), pp. 362-364. , https://doi.org/10.12968/jowc.2003.12.9.26539, PMID: 14601231Rosén, B.G., Blunt, L., Thomas, T.R., On in-vivoskin topography metrology and replication techniques (2005) Journal of Physics: Conference Series, 13, pp. 325-329Marrugo, A.G., Romero, L.A., Meneses, J., Wide-field 3D imaging with an LED pattern projector for accurate skin feature measurements via Fourier transform profilometry (2019) Dimensional Optical Metrology and Inspection for Practical Applications VIII, p. 1099102. , SPIELang, P., Radermacher, K., Steines, D., (2016) Kinematic and Parameterized Modeling for Patient-Adapted Implants, Tools, and Surgical Procedures, , inventorsUS Patent AppMarrugo, A.G., Romero, L.A., Meneses, J.E., Marrugo, J., (2018) Dispositivo Y Método De Reconstrucción 3D para La Medición De Pápulas En La Piel, , inventorsassignee. Colombian invention patent AppTakeda, M., Ina, H., Kobayashi, S., Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry (1982) Journal of the Optical Society of America, 72 (1), pp. 156-160. , https://doi.org/10.1364/JOSA.72.000156Li, B., An, Y., Zhang, S., Single-shot absolute 3D shape measurement with Fourier transform profilometry (2016) Applied Optics, 55 (19), p. 5219. , https://doi.org/10.1364/AO.55.005219, PMID: 27409213Vargas, R., Marrugo, A.G., Pineda, J., Meneses, J., Romero, L.A., Camera-projector calibration methods with compensation of geometric distortions in fringe projection profilometry: A comparative study (2018) Opt Pura Apl, 51 (3), p. 50305. , https://doi.org/10.7149/OPA.51.3.50305, 1–10Jolliffe, I.T., Cadima, J., Principal component analysis: A review and recent developments (2016) Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374 (2065), p. 20150202. , https://doi.org/10.1098/rsta.2015.0202Burt, P., Adelson, E., The Laplacian pyramid as a compact image code (1983) IEEE Transactions on Communications, 31 (4), pp. 532-540. , https://doi.org/10.1109/TCOM.1983.1095851Paris, S., Hasinoff, S.W., Kautz, J., Local Laplacian filters: Edge-aware image processing with a Laplacian pyramid (2011) ACM Trans Graph, 30 (4), pp. 68-71. , https://doi.org/10.1145/2010324.1964963Shao, L., Zhen, X., Tao, D., Li, X., Spatio-temporal Laplacian pyramid coding for action recognition (2014) IEEE Transactions on Cybernetics, 44 (6), pp. 817-827. , https://doi.org/10.1109/TCYB.2013.2273174, PMID: 23912503Forsyth, D.A., Ponce, J., (2012) Computer Vision: A Modern Approach, , Prentice-HallRedmon, J., Farhadi, A., YOLO9000: Better, faster, stronger (2017) Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7263-7271Li, Y., Light beams with flat-topped profiles (2002) Optics Letters, 27 (12), pp. 1007-1009. , https://doi.org/10.1364/ol.27.001007, PMID: 18026347Quellec, G., Lamard, M., Josselin, P.M., Cazuguel, G., Cochener, B., Roux, C., Optimal wavelet transform for the detection of microaneurysms in retina photographs (2008) IEEE Transactions on Medical Imaging, 27 (9), pp. 1230-1241. , https://doi.org/10.1109/TMI.2008.920619, PMID: 18779064Beirle, S., Lampel, J., Lerot, C., Sihler, H., Wagner, T., Parameterizing the instrumental spectral response function and its changes by a super-Gaussian and its derivatives (2017) Atmospheric Measurement Techniques, 10 (2), pp. 581-598. , https://doi.org/10.5194/amt-10-581-2017Coleman, T.F., Li, Y., An interior trust region approach for nonlinear minimization subject to bounds (1996) SIAM Journal on Optimization, 6 (2), pp. 418-445. , https://doi.org/10.1137/0806023Giavarina, D., Understanding Bland Altman analysis (2015) Biochemia Medica, 25 (2), pp. 141-151. , https://doi.org/10.11613/BM.2015.015, PMID: 26110027Altman, D.G., Bland, J.M., Measurement in medicine: The analysis of method comparison studies (1983) Journal of the Royal Statistical Society: Series D (The Statistician), 32 (3), pp. 307-317Krouwer, J.S., Setting performance goals and evaluating total analytical error for diagnostic assays (2002) Clinical Chemistry, 48 (6), pp. 919-927. , PMID: 12029009Bernstein, I.L., Li, J.T., Bernstein, D.I., Hamilton, R., Spector, S.L., Tan, R., Allergy diagnostic testing: An updated practice parameter (2008) Annals of Allergy, Asthma & Immunology, 100 (3), pp. S1-S148http://purl.org/coar/resource_type/c_6501ORIGINALdoiorg101371journalpone0223623.pdfapplication/pdf2774838https://repositorio.utb.edu.co/bitstream/20.500.12585/9240/1/doiorg101371journalpone0223623.pdf246a7905c1044b075aa9898cc6740390MD51TEXTdoiorg101371journalpone0223623.pdf.txtdoiorg101371journalpone0223623.pdf.txtExtracted texttext/plain58354https://repositorio.utb.edu.co/bitstream/20.500.12585/9240/4/doiorg101371journalpone0223623.pdf.txta6b9bdcb36a00a2b388819b3d29767baMD54THUMBNAILdoiorg101371journalpone0223623.pdf.jpgdoiorg101371journalpone0223623.pdf.jpgGenerated Thumbnailimage/jpeg91102https://repositorio.utb.edu.co/bitstream/20.500.12585/9240/5/doiorg101371journalpone0223623.pdf.jpg76791f46a2b5af3ca08648cd5df2e194MD5520.500.12585/9240oai:repositorio.utb.edu.co:20.500.12585/92402020-10-23 05:16:26.047Repositorio Institucional UTBrepositorioutb@utb.edu.co