Monopole and dipole layers in curved spacetimes: Formalism and examples
The discontinuities of electromagnetic test fields generated by general layers of electric and magnetic monopoles and dipoles are investigated in general curved spacetimes. The equivalence of electric currents and magnetic dipoles is discussed. The results are used to describe exact "Schwarzsch...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2011
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/9112
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/9112
- Palabra clave:
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_b9bc2705e43db385e16cae5fb740424f |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/9112 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
Monopole and dipole layers in curved spacetimes: Formalism and examples |
title |
Monopole and dipole layers in curved spacetimes: Formalism and examples |
spellingShingle |
Monopole and dipole layers in curved spacetimes: Formalism and examples |
title_short |
Monopole and dipole layers in curved spacetimes: Formalism and examples |
title_full |
Monopole and dipole layers in curved spacetimes: Formalism and examples |
title_fullStr |
Monopole and dipole layers in curved spacetimes: Formalism and examples |
title_full_unstemmed |
Monopole and dipole layers in curved spacetimes: Formalism and examples |
title_sort |
Monopole and dipole layers in curved spacetimes: Formalism and examples |
description |
The discontinuities of electromagnetic test fields generated by general layers of electric and magnetic monopoles and dipoles are investigated in general curved spacetimes. The equivalence of electric currents and magnetic dipoles is discussed. The results are used to describe exact "Schwarzschild disk" solutions endowed with such sources. The resulting distributions of charge and dipole densities on the disks are corroborated using the membrane paradigm. © 2011 American Physical Society. |
publishDate |
2011 |
dc.date.issued.none.fl_str_mv |
2011 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:32:58Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:32:58Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasVersion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
Physical Review D - Particles, Fields, Gravitation and Cosmology; Vol. 83, Núm. 12 |
dc.identifier.issn.none.fl_str_mv |
15507998 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/9112 |
dc.identifier.doi.none.fl_str_mv |
10.1103/PhysRevD.83.124023 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
24504208500 35562832600 25225467000 |
identifier_str_mv |
Physical Review D - Particles, Fields, Gravitation and Cosmology; Vol. 83, Núm. 12 15507998 10.1103/PhysRevD.83.124023 Universidad Tecnológica de Bolívar Repositorio UTB 24504208500 35562832600 25225467000 |
url |
https://hdl.handle.net/20.500.12585/9112 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessRights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_16ec |
eu_rights_str_mv |
restrictedAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-79960818483&doi=10.1103%2fPhysRevD.83.124023&partnerID=40&md5=f5babc87ae5c5656f2e7654dfb74f111 |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/9112/1/MiniProdInv.png |
bitstream.checksum.fl_str_mv |
0cb0f101a8d16897fb46fc914d3d7043 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021681061036032 |
spelling |
2020-03-26T16:32:58Z2020-03-26T16:32:58Z2011Physical Review D - Particles, Fields, Gravitation and Cosmology; Vol. 83, Núm. 1215507998https://hdl.handle.net/20.500.12585/911210.1103/PhysRevD.83.124023Universidad Tecnológica de BolívarRepositorio UTB245042085003556283260025225467000The discontinuities of electromagnetic test fields generated by general layers of electric and magnetic monopoles and dipoles are investigated in general curved spacetimes. The equivalence of electric currents and magnetic dipoles is discussed. The results are used to describe exact "Schwarzschild disk" solutions endowed with such sources. The resulting distributions of charge and dipole densities on the disks are corroborated using the membrane paradigm. © 2011 American Physical Society.Recurso electrónicoapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-79960818483&doi=10.1103%2fPhysRevD.83.124023&partnerID=40&md5=f5babc87ae5c5656f2e7654dfb74f111Monopole and dipole layers in curved spacetimes: Formalism and examplesinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Gürlebeck N.Bičák J.Gutiérrez-Piñeres A.C.Kuchař, K., (1968) Czech. J. Phys., 18, p. 435. , CZLIA6 0011-4626 10.1007/BF01698208Bičák, J., (1972) Gen. Relativ. Gravit., 3, p. 331. , GRGVA8 0001-7701 10.1007/BF00759172Bičák, J., (1980) Gen. Relativ. Gravit., 12, p. 195. , GRGVA8 0001-7701 10.1007/BF00756232Boulware, D.G., (1973) Phys. Rev. D, 8, p. 2363. , PRVDAQ 0556-2821 10.1103/PhysRevD.8.2363Lemos, J.P.S., Zaslavskii, O.B., (2010) Phys. Rev. D, 82, p. 024029. , PRVDAQ 1550-7998 10.1103/PhysRevD.82.024029Balakin, A.B., Lemos, J.P.S., Zayats, A.E., (2010) Phys. Rev. D, 81, p. 084015. , PRVDAQ 1550-7998 10.1103/PhysRevD.81.084015Belinski, V.A., Pizzi, M., Paolino, A., (2009) Int. J. Mod. Phys. D, 18, p. 513. , IMPDEO 0218-2718 10.1142/S0218271809014704Bičák, J., Gürlebeck, N., (2010) Phys. Rev. D, 81, p. 104022. , PRVDAQ 1550-7998 10.1103/PhysRevD.81.104022Wainwright, J., Ellis, G.F.R., (1997) Dynamical Systems in Cosmology, , Cambridge University Press, CambridgeBarrow, J.D., Maartens, R., Tsagas, C.G., (2007) Phys. Rep., 449, p. 131. , PRPLCM 0370-1573 10.1016/j.physrep.2007.04.006Thorne, K.S., Price, R.H., MacDonald, D.A., (1986) Black Holes: The Membrane Paradigm, , Yale University Press, New HavenPunsly, B., (2008) Black Hole Gravitohydrodynamics, , Springer Verlag, BerlinFrolov, V., Novikov, I., (1998) Black Hole Physics: Basic Concepts and New Developments, , Kluwer Academic Publishers, DordrechtRezzolla, L., Ahmedov, B.J., Miller, J.C., General relativistic electromagnetic fields of a slowly rotating magnetized neutron star - I. Formulation of the equations (2001) Monthly Notices of the Royal Astronomical Society, 322 (4), pp. 723-740. , DOI 10.1046/j.1365-8711.2001.04161.xRezzolla, L., Ahmedov, B.J., Electromagnetic fields in the exterior of an oscillating relativistic star - I. General expressions and application to a rotating magnetic dipole (2004) Monthly Notices of the Royal Astronomical Society, 352 (4), pp. 1161-1179. , DOI 10.1111/j.1365-2966.2004.08006.xGrosser, M., Kunzinger, M., Oberguggenberger, M., Steinbauer, R., (2001) Geometric Theory of Generalized Functions with Applications to General Relativity., , Kluwer Academic Publishers, DordrechtSteinbauer, R., Vickers, J.A., The use of generalized functions and distributions in general relativity (2006) Classical and Quantum Gravity, 23 (10), pp. R91-R114. , DOI 10.1088/0264-9381/23/10/R01, PII S0264938106114033Gürlebeck, N., Bičák, J., Gutiérrez-Piñeres, A.C., Gen. Relativ. Gravit., , arXiv:1105.1934v1Bičák, J., Dvořák, L., (1977) Czech. J. Phys., 27, p. 127. , CZLIA6 0011-4626 10.1007/BF01587004Bičák, J., Dvořák, L., (1976) Gen. Relativ. Gravit., 7, p. 959. , GRGVA8 0001-7701 10.1007/BF00766421Bičák, J., Lynden-Bell, D., Katz, J., (1993) Phys. Rev. D, 47, p. 4334. , PRVDAQ 0556-2821 10.1103/PhysRevD.47.4334Jackson, J.D., (1998) Classical Electrodynamics, , John Wiley & Sons, New York, 3rd. edGeroch, R., (1971) J. Math. Phys. (N.Y.), 12, p. 918. , JMAPAQ 0022-2488 10.1063/1.1665681Israel, W., (1966) Nuovo Cimento B, 44, p. 1. , NCIBAW 0369-3554 10.1007/BF02710419De La Cruz, V., Israel, W., (1967) Nuovo Cimento A, 51, p. 744. , NCIAAT 0369-3546 10.1007/BF02721742Barrabès, C., Israel, W., (1991) Phys. Rev. D, 43, p. 1129. , PRVDAQ 0556-2821 10.1103/PhysRevD.43.1129Linet, B., (1976) J. Phys. A, 9, p. 1081. , JPHAC5 0305-4470 10.1088/0305-4470/9/7/010Thorne, K.S., MacDonald, D., (1982) Mon. Not. R. Astron. Soc., 198, p. 339. , MNRAA4 0035-8711Hanni, R.S., Ruffini, R., (1973) Phys. Rev. D, 8, p. 3259. , PRVDAQ 0556-2821 10.1103/PhysRevD.8.3259Bičák, J., Ledvinka, T., (1993) Phys. Rev. Lett., 71, p. 1669. , PRLTAO 0031-9007 10.1103/PhysRevLett.71.1669http://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9112/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9112oai:repositorio.utb.edu.co:20.500.12585/91122021-02-02 14:08:59.481Repositorio Institucional UTBrepositorioutb@utb.edu.co |