Monopole and dipole layers in curved spacetimes: Formalism and examples

The discontinuities of electromagnetic test fields generated by general layers of electric and magnetic monopoles and dipoles are investigated in general curved spacetimes. The equivalence of electric currents and magnetic dipoles is discussed. The results are used to describe exact "Schwarzsch...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2011
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/9112
Acceso en línea:
https://hdl.handle.net/20.500.12585/9112
Palabra clave:
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_b9bc2705e43db385e16cae5fb740424f
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/9112
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Monopole and dipole layers in curved spacetimes: Formalism and examples
title Monopole and dipole layers in curved spacetimes: Formalism and examples
spellingShingle Monopole and dipole layers in curved spacetimes: Formalism and examples
title_short Monopole and dipole layers in curved spacetimes: Formalism and examples
title_full Monopole and dipole layers in curved spacetimes: Formalism and examples
title_fullStr Monopole and dipole layers in curved spacetimes: Formalism and examples
title_full_unstemmed Monopole and dipole layers in curved spacetimes: Formalism and examples
title_sort Monopole and dipole layers in curved spacetimes: Formalism and examples
description The discontinuities of electromagnetic test fields generated by general layers of electric and magnetic monopoles and dipoles are investigated in general curved spacetimes. The equivalence of electric currents and magnetic dipoles is discussed. The results are used to describe exact "Schwarzschild disk" solutions endowed with such sources. The resulting distributions of charge and dipole densities on the disks are corroborated using the membrane paradigm. © 2011 American Physical Society.
publishDate 2011
dc.date.issued.none.fl_str_mv 2011
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:32:58Z
dc.date.available.none.fl_str_mv 2020-03-26T16:32:58Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.hasVersion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Physical Review D - Particles, Fields, Gravitation and Cosmology; Vol. 83, Núm. 12
dc.identifier.issn.none.fl_str_mv 15507998
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/9112
dc.identifier.doi.none.fl_str_mv 10.1103/PhysRevD.83.124023
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 24504208500
35562832600
25225467000
identifier_str_mv Physical Review D - Particles, Fields, Gravitation and Cosmology; Vol. 83, Núm. 12
15507998
10.1103/PhysRevD.83.124023
Universidad Tecnológica de Bolívar
Repositorio UTB
24504208500
35562832600
25225467000
url https://hdl.handle.net/20.500.12585/9112
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessRights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-79960818483&doi=10.1103%2fPhysRevD.83.124023&partnerID=40&md5=f5babc87ae5c5656f2e7654dfb74f111
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/9112/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021681061036032
spelling 2020-03-26T16:32:58Z2020-03-26T16:32:58Z2011Physical Review D - Particles, Fields, Gravitation and Cosmology; Vol. 83, Núm. 1215507998https://hdl.handle.net/20.500.12585/911210.1103/PhysRevD.83.124023Universidad Tecnológica de BolívarRepositorio UTB245042085003556283260025225467000The discontinuities of electromagnetic test fields generated by general layers of electric and magnetic monopoles and dipoles are investigated in general curved spacetimes. The equivalence of electric currents and magnetic dipoles is discussed. The results are used to describe exact "Schwarzschild disk" solutions endowed with such sources. The resulting distributions of charge and dipole densities on the disks are corroborated using the membrane paradigm. © 2011 American Physical Society.Recurso electrónicoapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-79960818483&doi=10.1103%2fPhysRevD.83.124023&partnerID=40&md5=f5babc87ae5c5656f2e7654dfb74f111Monopole and dipole layers in curved spacetimes: Formalism and examplesinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Gürlebeck N.Bičák J.Gutiérrez-Piñeres A.C.Kuchař, K., (1968) Czech. J. Phys., 18, p. 435. , CZLIA6 0011-4626 10.1007/BF01698208Bičák, J., (1972) Gen. Relativ. Gravit., 3, p. 331. , GRGVA8 0001-7701 10.1007/BF00759172Bičák, J., (1980) Gen. Relativ. Gravit., 12, p. 195. , GRGVA8 0001-7701 10.1007/BF00756232Boulware, D.G., (1973) Phys. Rev. D, 8, p. 2363. , PRVDAQ 0556-2821 10.1103/PhysRevD.8.2363Lemos, J.P.S., Zaslavskii, O.B., (2010) Phys. Rev. D, 82, p. 024029. , PRVDAQ 1550-7998 10.1103/PhysRevD.82.024029Balakin, A.B., Lemos, J.P.S., Zayats, A.E., (2010) Phys. Rev. D, 81, p. 084015. , PRVDAQ 1550-7998 10.1103/PhysRevD.81.084015Belinski, V.A., Pizzi, M., Paolino, A., (2009) Int. J. Mod. Phys. D, 18, p. 513. , IMPDEO 0218-2718 10.1142/S0218271809014704Bičák, J., Gürlebeck, N., (2010) Phys. Rev. D, 81, p. 104022. , PRVDAQ 1550-7998 10.1103/PhysRevD.81.104022Wainwright, J., Ellis, G.F.R., (1997) Dynamical Systems in Cosmology, , Cambridge University Press, CambridgeBarrow, J.D., Maartens, R., Tsagas, C.G., (2007) Phys. Rep., 449, p. 131. , PRPLCM 0370-1573 10.1016/j.physrep.2007.04.006Thorne, K.S., Price, R.H., MacDonald, D.A., (1986) Black Holes: The Membrane Paradigm, , Yale University Press, New HavenPunsly, B., (2008) Black Hole Gravitohydrodynamics, , Springer Verlag, BerlinFrolov, V., Novikov, I., (1998) Black Hole Physics: Basic Concepts and New Developments, , Kluwer Academic Publishers, DordrechtRezzolla, L., Ahmedov, B.J., Miller, J.C., General relativistic electromagnetic fields of a slowly rotating magnetized neutron star - I. Formulation of the equations (2001) Monthly Notices of the Royal Astronomical Society, 322 (4), pp. 723-740. , DOI 10.1046/j.1365-8711.2001.04161.xRezzolla, L., Ahmedov, B.J., Electromagnetic fields in the exterior of an oscillating relativistic star - I. General expressions and application to a rotating magnetic dipole (2004) Monthly Notices of the Royal Astronomical Society, 352 (4), pp. 1161-1179. , DOI 10.1111/j.1365-2966.2004.08006.xGrosser, M., Kunzinger, M., Oberguggenberger, M., Steinbauer, R., (2001) Geometric Theory of Generalized Functions with Applications to General Relativity., , Kluwer Academic Publishers, DordrechtSteinbauer, R., Vickers, J.A., The use of generalized functions and distributions in general relativity (2006) Classical and Quantum Gravity, 23 (10), pp. R91-R114. , DOI 10.1088/0264-9381/23/10/R01, PII S0264938106114033Gürlebeck, N., Bičák, J., Gutiérrez-Piñeres, A.C., Gen. Relativ. Gravit., , arXiv:1105.1934v1Bičák, J., Dvořák, L., (1977) Czech. J. Phys., 27, p. 127. , CZLIA6 0011-4626 10.1007/BF01587004Bičák, J., Dvořák, L., (1976) Gen. Relativ. Gravit., 7, p. 959. , GRGVA8 0001-7701 10.1007/BF00766421Bičák, J., Lynden-Bell, D., Katz, J., (1993) Phys. Rev. D, 47, p. 4334. , PRVDAQ 0556-2821 10.1103/PhysRevD.47.4334Jackson, J.D., (1998) Classical Electrodynamics, , John Wiley & Sons, New York, 3rd. edGeroch, R., (1971) J. Math. Phys. (N.Y.), 12, p. 918. , JMAPAQ 0022-2488 10.1063/1.1665681Israel, W., (1966) Nuovo Cimento B, 44, p. 1. , NCIBAW 0369-3554 10.1007/BF02710419De La Cruz, V., Israel, W., (1967) Nuovo Cimento A, 51, p. 744. , NCIAAT 0369-3546 10.1007/BF02721742Barrabès, C., Israel, W., (1991) Phys. Rev. D, 43, p. 1129. , PRVDAQ 0556-2821 10.1103/PhysRevD.43.1129Linet, B., (1976) J. Phys. A, 9, p. 1081. , JPHAC5 0305-4470 10.1088/0305-4470/9/7/010Thorne, K.S., MacDonald, D., (1982) Mon. Not. R. Astron. Soc., 198, p. 339. , MNRAA4 0035-8711Hanni, R.S., Ruffini, R., (1973) Phys. Rev. D, 8, p. 3259. , PRVDAQ 0556-2821 10.1103/PhysRevD.8.3259Bičák, J., Ledvinka, T., (1993) Phys. Rev. Lett., 71, p. 1669. , PRLTAO 0031-9007 10.1103/PhysRevLett.71.1669http://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9112/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9112oai:repositorio.utb.edu.co:20.500.12585/91122021-02-02 14:08:59.481Repositorio Institucional UTBrepositorioutb@utb.edu.co