Economic dispatch of energy storage systems in dc microgrids employing a semidefinite programming model
A mathematical optimization approach for the optimal operation focused on the economic dispatch for dc microgrid with high penetration of distributed generators and energy storage systems (ESS) via semidefinite programming (SDP) is proposed in this paper. The SDP allows transforming the nonlinear an...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/9165
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/9165
- Palabra clave:
- Convex reformulation
Dc microgrids
Economic dispatch
Energy storage systems
Semidefinite programming
Distributed computer systems
Energy storage
Neural networks
Optimization
Scheduling
Wind
Convex reformulation
Dc microgrids
Economic dispatch
Energy storage systems
Semidefinite programming
Electric load dispatching
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_b99b162a94e4730d9a513dee7354a94f |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/9165 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
Economic dispatch of energy storage systems in dc microgrids employing a semidefinite programming model |
title |
Economic dispatch of energy storage systems in dc microgrids employing a semidefinite programming model |
spellingShingle |
Economic dispatch of energy storage systems in dc microgrids employing a semidefinite programming model Convex reformulation Dc microgrids Economic dispatch Energy storage systems Semidefinite programming Distributed computer systems Energy storage Neural networks Optimization Scheduling Wind Convex reformulation Dc microgrids Economic dispatch Energy storage systems Semidefinite programming Electric load dispatching |
title_short |
Economic dispatch of energy storage systems in dc microgrids employing a semidefinite programming model |
title_full |
Economic dispatch of energy storage systems in dc microgrids employing a semidefinite programming model |
title_fullStr |
Economic dispatch of energy storage systems in dc microgrids employing a semidefinite programming model |
title_full_unstemmed |
Economic dispatch of energy storage systems in dc microgrids employing a semidefinite programming model |
title_sort |
Economic dispatch of energy storage systems in dc microgrids employing a semidefinite programming model |
dc.subject.keywords.none.fl_str_mv |
Convex reformulation Dc microgrids Economic dispatch Energy storage systems Semidefinite programming Distributed computer systems Energy storage Neural networks Optimization Scheduling Wind Convex reformulation Dc microgrids Economic dispatch Energy storage systems Semidefinite programming Electric load dispatching |
topic |
Convex reformulation Dc microgrids Economic dispatch Energy storage systems Semidefinite programming Distributed computer systems Energy storage Neural networks Optimization Scheduling Wind Convex reformulation Dc microgrids Economic dispatch Energy storage systems Semidefinite programming Electric load dispatching |
description |
A mathematical optimization approach for the optimal operation focused on the economic dispatch for dc microgrid with high penetration of distributed generators and energy storage systems (ESS) via semidefinite programming (SDP) is proposed in this paper. The SDP allows transforming the nonlinear and non-convex characteristics of the economic dispatch problem into a convex approximation which is easy for implementation in specialized software, i.e., CVX. The proposed mathematical approach contemplates the efficient operation of a dc microgrid over a period of time with variable energy purchase prices, which makes it a practical methodology to apply in real-time operating conditions. A nonlinear autoregressive exogenous (NARX) model is employed for training an artificial neural network (ANN) for forecasting solar radiation and wind speed for renewable generation integration and dispatch considering periods of prediction of 0.5 h. Four scenarios are proposed to analyze the inclusion of ESS in a dc microgrid for economic dispatch studies. Additionally, the results are compared with GAMS commercial optimization package, which allows validating the accuracy and quality of the proposed optimizing methodology. © 2018 Elsevier Ltd |
publishDate |
2019 |
dc.date.issued.none.fl_str_mv |
2019 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:33:06Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:33:06Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasVersion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
Journal of Energy Storage; Vol. 21, pp. 1-8 |
dc.identifier.issn.none.fl_str_mv |
2352152X |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/9165 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.est.2018.10.025 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
57191493648 56919564100 57204572827 36449223500 55791991200 |
identifier_str_mv |
Journal of Energy Storage; Vol. 21, pp. 1-8 2352152X 10.1016/j.est.2018.10.025 Universidad Tecnológica de Bolívar Repositorio UTB 57191493648 56919564100 57204572827 36449223500 55791991200 |
url |
https://hdl.handle.net/20.500.12585/9165 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessRights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_16ec |
eu_rights_str_mv |
restrictedAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Ltd |
publisher.none.fl_str_mv |
Elsevier Ltd |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85056222022&doi=10.1016%2fj.est.2018.10.025&partnerID=40&md5=58ea9fbf0cbef7e0364b3d51354c7119 |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/9165/1/MiniProdInv.png https://repositorio.utb.edu.co/bitstream/20.500.12585/9165/4/1-s2.0-S2352152X18302962-main.pdf.jpg https://repositorio.utb.edu.co/bitstream/20.500.12585/9165/2/1-s2.0-S2352152X18302962-main.pdf https://repositorio.utb.edu.co/bitstream/20.500.12585/9165/3/1-s2.0-S2352152X18302962-main.pdf.txt |
bitstream.checksum.fl_str_mv |
0cb0f101a8d16897fb46fc914d3d7043 1210b94f897e1fbed305947bbbdf5d25 ba0823fe743fbe959603d7ad1da0fb90 c436e3c59d8e15cc422f158f66e237ea |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021559641178112 |
spelling |
2020-03-26T16:33:06Z2020-03-26T16:33:06Z2019Journal of Energy Storage; Vol. 21, pp. 1-82352152Xhttps://hdl.handle.net/20.500.12585/916510.1016/j.est.2018.10.025Universidad Tecnológica de BolívarRepositorio UTB5719149364856919564100572045728273644922350055791991200A mathematical optimization approach for the optimal operation focused on the economic dispatch for dc microgrid with high penetration of distributed generators and energy storage systems (ESS) via semidefinite programming (SDP) is proposed in this paper. The SDP allows transforming the nonlinear and non-convex characteristics of the economic dispatch problem into a convex approximation which is easy for implementation in specialized software, i.e., CVX. The proposed mathematical approach contemplates the efficient operation of a dc microgrid over a period of time with variable energy purchase prices, which makes it a practical methodology to apply in real-time operating conditions. A nonlinear autoregressive exogenous (NARX) model is employed for training an artificial neural network (ANN) for forecasting solar radiation and wind speed for renewable generation integration and dispatch considering periods of prediction of 0.5 h. Four scenarios are proposed to analyze the inclusion of ESS in a dc microgrid for economic dispatch studies. Additionally, the results are compared with GAMS commercial optimization package, which allows validating the accuracy and quality of the proposed optimizing methodology. © 2018 Elsevier LtdDepartamento Administrativo de Ciencia, Tecnología e Innovación, COLCIENCIAS Department of Science, Information Technology and Innovation, Queensland GovernmentThis work was partially supported by the National Scholarship Program Doctorates of the Administrative Department of Science, Technology and Innovation of Colombia (COLCIENCIAS), by calling contest 727-2015.Recurso electrónicoapplication/pdfengElsevier Ltdhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85056222022&doi=10.1016%2fj.est.2018.10.025&partnerID=40&md5=58ea9fbf0cbef7e0364b3d51354c7119Economic dispatch of energy storage systems in dc microgrids employing a semidefinite programming modelinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Convex reformulationDc microgridsEconomic dispatchEnergy storage systemsSemidefinite programmingDistributed computer systemsEnergy storageNeural networksOptimizationSchedulingWindConvex reformulationDc microgridsEconomic dispatchEnergy storage systemsSemidefinite programmingElectric load dispatchingGil-González W.Montoya O.D.Holguín E.Garces A.Grisales-Noreña L.F.Dragičević, T., Lu, X., Vasquez, J.C., Guerrero, J.M., DC microgrids-Part I: A review of control strategies and stabilization techniques (2016) IEEE Trans. Power Electron, 31 (7), pp. 4876-4891Grisales, L.F., Grajales, A., Montoya, O.D., Hincapie, R.A., Granada, M., Castro, C.A., Optimal location, sizing and operation of energy storage in distribution systems using multi-objective approach (2017) IEEE Latin Am. Trans., 15 (6), pp. 1084-1090Strunz, K., Abbasi, E., Huu, D.N., DC microgrid for wind and solar power integration (2014) IEEE J. Emerging Sel. Top. Power Electron, 2 (1), pp. 115-126Giraldo, O.D.M., González, W.J.G., Ruiz, A.G., Mejía, A.E., Noreña, L.F.G., Nonlinear control for battery energy storage systems in power grids (2018) 2018 IEEE Green Technologies Conference (GreenTech), pp. 65-70Montoya, O.D., Gil-González, W., Garces, A., Optimal Power Flow on DC Microgrids: A Quadratic Convex Approximation (2018) IEEE Transactions on Circuits and Systems II: Express Briefs, , 1-1. doiParhizi, S., Lotfi, H., Khodaei, A., Bahramirad, S., State of the art in research on microgrids: A review (2015) IEEE Access, 3, pp. 890-925Montoya, O.D., Garcés, A., Serra, F.M., DERs integration in microgrids using VSCs via proportional feedback linearization control: Supercapacitors and distributed generators (2018) J. Energy Storage, 16, pp. 250-258Ortega-Velázquez, I., Espinosa-Pérez, G.R., Montoya, O.D., Garcés, A., na, L.F.G.-N., Current Control Mode in PV Systems Integrated with DC-DC Converters for MPPT: An IDA-PBC Approach (2018) in: 2018 IEEE Green Technologies Conference (GreenTech), doi:10.1109/GreenTech.2018.00010, pp. 1-6Montoya, O.D., Garcés, A., Ortega-Velázquez, I., Espinosa-P'erez, G.R., Passivity-based control for battery charging/discharging applications by using a buck-boost dc-dc converter (2018) 2018 IEEE Green Technologies Conference (GreenTech), pp. 89-94Wang, P., Wang, W., Xu, D., Optimal Sizing of Distributed Generations in DC Microgrids With Comprehensive Consideration of System Operation Modes and Operation Targets (2018) IEEE Access, 6, pp. 31129-31140Rahmani-Andebili, M., Stochastic, adaptive, and dynamic control of energy storage systems integrated with renewable energy sources for power loss minimization (2017) Renew. Energy, 113, pp. 1462-1471Rahmani-Andebili, M., Shen, H., Cooperative distributed energy scheduling for smart homes applying stochastic model predictive control (2017) Communications (ICC), 2017 IEEE International Conference on, IEEE, pp. 1-6Montoya-Giraldo, O.D., Gil-González, W.J., Garcés-Ruíz, A., Optimal power flow for radial and mesh grids using semidefinite programming (2017) Tecno Lógicas, 20 (40), pp. 29-42Azad, V., Khoie, R., Mitigating carbon dioxide emission with gradual implemetation of distributed generation in northern california (2013) North American Power Symposium (NAPS), 2013, IEEE, pp. 1-6Mahabir, R., Shrestha, R.M., Climate change and forest management: Adaptation of geospatial technologies (2015) Agro-Geoinformatics (Agro-geoinformatics), 2015 Fourth International Conference on, IEEE, pp. 209-214Montoya, O.D., Grajales, A., Garces, A., Castro, C.A., Distribution systems operation considering energy storage devices and distributed generation (2017) IEEE Latin Am. Trans., 15 (5), pp. 890-900Abdi, H., Dehnavi, E., Mohammadi, F., Dynamic economic dispatch problem integrated with demand response (DEDDR) considering non-linear responsive load models (2016) IEEE Trans. Smart Grid, 7 (6), pp. 2586-2595Li, C., De Bosio, F., Chen, F., Chaudhary, S.K., Vasquez, J.C., Guerrero, J.M., Economic dispatch for operating cost minimization under real-time pricing in droop-controlled dc microgrid (2017) IEEE J. Emerging Sel. Top. Power Electron, 5 (1), pp. 587-595Paterakis, N.G., Erdinc, O., Bakirtzis, A.G., Catal ao, J.P., Optimal household appliances scheduling under day-ahead pricing and load-shaping demand response strategies (2015) IEEE Trans. Ind. Informat., 11 (6), pp. 1509-1519Hu, J., Cao, J., Yong, T., Multi-level dispatch control architecture for power systems with demand-side resources (2015) IET Gener. Transm. Distrib, 9 (16), pp. 2799-2810McKenna, K., Keane, A., Residential load modeling of price-based demand response for network impact studies (2016) IEEE Trans. Smart Grid, 7 (5), pp. 2285-2294Bhattacharjee, V., Khan, I., A non-linear convex cost model for economic dispatch in microgrids (2018) Appl. Energy, 222, pp. 637-648Boyd, S., Vandenberghe, L., Convex optimization (2004), Cambridge University PressNesterov, Y., Lectures on Convex Optimization, Springer Optimization and Its Applications (2018), https://books.google.com.co/books?id=JSyNtQEACAAJ, Springer International Publishing URLFarasat, M., Mehraeen, S., Arabali, A., Trzynadlowski, A., GA-based optimal power flow for microgrids with DC distribution network (2015) in: Energy Conversion Congress and Exposition (ECCE), 2015 IEEE, IEEE, pp. 3372-3379Trinklein, E.H., Parker, G.G., Robinett, R.D., Weaver, W.W., Toward Online Optimal Power Flow of a Networked DC Microgrid System (2017) IEEE J. Emerging Sel. Top. Power Electron, 5 (3), pp. 949-959Coelho, M., Oliveira, A., Soares, S., Optimal power flow in DC constrained operating reserve through interior point methods (2012) Transmission & Distribution: Latin America Conference and Exposition (T&D-LA), 2012 Sixth IEEE/PES, IEEE, pp. 1-5Garces, A., Correa, C.A., Bola nos, R., Optimal operation of distributed energy storage units for minimizing energy losses (2014) Transmission & Distribution Conference and Exposition-Latin America (PES T&D-LA), 2014 IEEE PES, IEEE, pp. 1-6Gan, L., Low, S.H., Optimal power flow in direct current networks (2014) IEEE Trans. Power Syst., 29 (6), pp. 2892-2904Garces, A., Montoya, D., Torres, R., Optimal power flow in multiterminal HVDC systems considering DC/DC converters (2016) Industrial Electronics (ISIE), 2016 IEEE 25th International Symposium on, IEEE, pp. 1212-1217Shuai, H., Fang, J., Ai, X., Tang, Y., Wen, J., He, H., Stochastic Optimization of Economic Dispatch for Microgrid Based on Approximate Dynamic Programming (2018) IEEE Trans. Smart Grid, , 1-1. doiLiu, Y., Nair, N.K.C., A two-stage stochastic dynamic economic dispatch model considering wind uncertainty (2016) IEEE Trans. Sustain. Energy, 7 (2), pp. 819-829Yang, L., He, M., Vittal, V., Zhang, J., Stochastic optimization-based economic dispatch and interruptible load management with increased wind penetration (2016) IEEE Trans. Smart Grid, 7 (2), pp. 730-739(2006), http://atlas.ideam.gov.co/visorAtlasVientos.html, IDEAM, Atlas del viento y generación eólica en colombia, Tech. rep., Gobierno de Colombia. URL(2005), http://atlas.ideam.gov.co/visorAtlasRadiacion.html, IDEAM, Atlas de radiación solar, ultravioleta y ozono en Colombia, Tech. rep., Gobierno de Colombia. URLRodrííuez, F., Fleetwood, A., Galarza, A., Fontán, L., Predicting solar energy generation through artificial neural networks using weather forecasts for microgrid control (2018) Renew. Energy, 126, pp. 855-864Montoya, O.D., Grajales, A., Grisales, L.F., Castro, C.A., Optimal Location and Operation of Energy Storage Devices in Microgrids in Presence of Distributed Generation (in Spanish) (2017) Revista CINTEX, 22 (1), pp. 97-117Photovoltaics, D.G., Storage, E., IEEE Guide for Optimizing the Performance and Life of Lead-Acid Batteries in Remote Hybrid Power SystemsLuo, Z.-Q., Ma, W.-K., So, A.M.-C., Ye, Y., Zhang, S., Semidefinite relaxation of quadratic optimization problems (2010) IEEE Signal Process. Mag., 27 (3), pp. 20-34Bai, X., Wei, H., Fujisawa, K., Wang, Y., Semidefinite programming for optimal power flow problems (2008) Int. J. Electric Power Energy Syst., 30 (6-7), pp. 383-392Bai, X., Wei, H., A semidefinite programming method with graph partitioning technique for optimal power flow problems (2011) Int. J. Electric Power Energy Syst., 33 (7), pp. 1309-1314Garces, A., A quadratic approximation for the optimal power flow in power distribution systems (2016) Electr. Power Syst. Res., 130, pp. 222-229Grant, M., Boyd, S., http://cvxr.com/cvx, CVX: Matlab software for disciplined convex programming, version 2.1 (Mar. 2014)Guimaraes, D.A., Floriano, G.H.F., Chaves, L.S., A Tutorial on the CVX System for Modeling and Solving Convex Optimization Problems (2015) IEEE Latin America Transactions, 13 (5), pp. 1228-1257Data, S.S.R., Time series of solar radiation datahttp://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9165/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD511-s2.0-S2352152X18302962-main.pdf.jpg1-s2.0-S2352152X18302962-main.pdf.jpgGenerated Thumbnailimage/jpeg100121https://repositorio.utb.edu.co/bitstream/20.500.12585/9165/4/1-s2.0-S2352152X18302962-main.pdf.jpg1210b94f897e1fbed305947bbbdf5d25MD54ORIGINAL1-s2.0-S2352152X18302962-main.pdf1-s2.0-S2352152X18302962-main.pdfapplication/pdf1604709https://repositorio.utb.edu.co/bitstream/20.500.12585/9165/2/1-s2.0-S2352152X18302962-main.pdfba0823fe743fbe959603d7ad1da0fb90MD52TEXT1-s2.0-S2352152X18302962-main.pdf.txt1-s2.0-S2352152X18302962-main.pdf.txtExtracted texttext/plain44753https://repositorio.utb.edu.co/bitstream/20.500.12585/9165/3/1-s2.0-S2352152X18302962-main.pdf.txtc436e3c59d8e15cc422f158f66e237eaMD5320.500.12585/9165oai:repositorio.utb.edu.co:20.500.12585/91652022-03-03 02:21:20.95Repositorio Institucional UTBrepositorioutb@utb.edu.co |