Assembly of polarity, emotion and user statistics for detection of fake profiles Notebook for PAN at CLEF 2020

The explosive growth of fake news on social networks has aroused great interest from researchers in different disciplines. To achieve efficient and effective detection of fake news requires scientific contributions from various disciplines, such as computational linguistics, artificial intelligence,...

Full description

Autores:
Moreno-Sandoval, Luis Gabriel
Puertas, Edwin
Pomares-Quimbaya, Alexandra
Alvarado-Valencia, Jorge Andres
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12286
Acceso en línea:
https://scopus.utb.elogim.com/record/display.uri?eid=2-s2.0-85121794424&origin=resultslist&sort=plf-f&src=s&sid=5b5924365d87681725a9d6c17daad1d5&sot=b&sdt=b&s=TITLE-ABS-KEY%28Assembly+of+polarity%2C+emotion+and+user+statistics+for+detection+of+fake+profiles+Notebook+for+PAN+at+CLEF+2020%29&sl=125&sessionSearchId=5b5924365d87681725a9d6c17daad1d5
https://hdl.handle.net/20.500.12585/12286
Palabra clave:
Rumor;
Social Media;
Disinformation
LEMB
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_b8a078e480dfba8e1f9ed4e811e19286
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12286
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Assembly of polarity, emotion and user statistics for detection of fake profiles Notebook for PAN at CLEF 2020
title Assembly of polarity, emotion and user statistics for detection of fake profiles Notebook for PAN at CLEF 2020
spellingShingle Assembly of polarity, emotion and user statistics for detection of fake profiles Notebook for PAN at CLEF 2020
Rumor;
Social Media;
Disinformation
LEMB
title_short Assembly of polarity, emotion and user statistics for detection of fake profiles Notebook for PAN at CLEF 2020
title_full Assembly of polarity, emotion and user statistics for detection of fake profiles Notebook for PAN at CLEF 2020
title_fullStr Assembly of polarity, emotion and user statistics for detection of fake profiles Notebook for PAN at CLEF 2020
title_full_unstemmed Assembly of polarity, emotion and user statistics for detection of fake profiles Notebook for PAN at CLEF 2020
title_sort Assembly of polarity, emotion and user statistics for detection of fake profiles Notebook for PAN at CLEF 2020
dc.creator.fl_str_mv Moreno-Sandoval, Luis Gabriel
Puertas, Edwin
Pomares-Quimbaya, Alexandra
Alvarado-Valencia, Jorge Andres
dc.contributor.author.none.fl_str_mv Moreno-Sandoval, Luis Gabriel
Puertas, Edwin
Pomares-Quimbaya, Alexandra
Alvarado-Valencia, Jorge Andres
dc.subject.keywords.spa.fl_str_mv Rumor;
Social Media;
Disinformation
topic Rumor;
Social Media;
Disinformation
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description The explosive growth of fake news on social networks has aroused great interest from researchers in different disciplines. To achieve efficient and effective detection of fake news requires scientific contributions from various disciplines, such as computational linguistics, artificial intelligence, and sociology. Here we illustrate how polarity, emotion, and user statistics can be used to detect fake profiles on Twitter’s social network. This paper presents a novel strategy for the characterization of the Twitter profile based on the generation of an assembly of polarity, emotion, and user statistics characteristics that serve as input to a set of classifiers. The results are part of our participation in the PAN 2020 in the CLEF in the task of Profiling Fake News Spreaders on Twitter. Copyright © 2020 for this paper by its authors.
publishDate 2020
dc.date.issued.none.fl_str_mv 2020
dc.date.accessioned.none.fl_str_mv 2023-07-21T15:47:38Z
dc.date.available.none.fl_str_mv 2023-07-21T15:47:38Z
dc.date.submitted.none.fl_str_mv 2023
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
status_str draft
dc.identifier.citation.spa.fl_str_mv Moreno-Sandoval, L. G., Puertas, E., Pomares-Quimbaya, A., & Alvarado-Valencia, J. A. (s/f). Notebook for PAN at CLEF 2020. Webis.de. Recuperado el 14 de julio de 2023, de https://pan.webis.de/downloads/publications/papers/morenosandoval_2020.pdf
dc.identifier.uri.none.fl_str_mv https://scopus.utb.elogim.com/record/display.uri?eid=2-s2.0-85121794424&origin=resultslist&sort=plf-f&src=s&sid=5b5924365d87681725a9d6c17daad1d5&sot=b&sdt=b&s=TITLE-ABS-KEY%28Assembly+of+polarity%2C+emotion+and+user+statistics+for+detection+of+fake+profiles+Notebook+for+PAN+at+CLEF+2020%29&sl=125&sessionSearchId=5b5924365d87681725a9d6c17daad1d5
https://hdl.handle.net/20.500.12585/12286
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Moreno-Sandoval, L. G., Puertas, E., Pomares-Quimbaya, A., & Alvarado-Valencia, J. A. (s/f). Notebook for PAN at CLEF 2020. Webis.de. Recuperado el 14 de julio de 2023, de https://pan.webis.de/downloads/publications/papers/morenosandoval_2020.pdf
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://scopus.utb.elogim.com/record/display.uri?eid=2-s2.0-85121794424&origin=resultslist&sort=plf-f&src=s&sid=5b5924365d87681725a9d6c17daad1d5&sot=b&sdt=b&s=TITLE-ABS-KEY%28Assembly+of+polarity%2C+emotion+and+user+statistics+for+detection+of+fake+profiles+Notebook+for+PAN+at+CLEF+2020%29&sl=125&sessionSearchId=5b5924365d87681725a9d6c17daad1d5
https://hdl.handle.net/20.500.12585/12286
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 8 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv CEUR Workshop Proceedings
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12286/1/morenosandoval_2020.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12286/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12286/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12286/4/morenosandoval_2020.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12286/5/morenosandoval_2020.pdf.jpg
bitstream.checksum.fl_str_mv 3bcf3a1ce5090f303b734c9c81cacb84
4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
ed738e8ec37d9b8faa92be5bae764029
933ce216960ed90173ce2a7de4b18ee3
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021707337302016
spelling Moreno-Sandoval, Luis Gabrielebd4011f-e093-46cc-97aa-9e841c4c41e2Puertas, Edwin5a1b1566-e112-43dc-8ac7-310ea9af8f05Pomares-Quimbaya, Alexandraf50a0d31-dc2f-4e05-aa15-e82c9c3c60f0Alvarado-Valencia, Jorge Andres902a19a4-4028-4417-95b1-293c7f1169cb2023-07-21T15:47:38Z2023-07-21T15:47:38Z20202023Moreno-Sandoval, L. G., Puertas, E., Pomares-Quimbaya, A., & Alvarado-Valencia, J. A. (s/f). Notebook for PAN at CLEF 2020. Webis.de. Recuperado el 14 de julio de 2023, de https://pan.webis.de/downloads/publications/papers/morenosandoval_2020.pdfhttps://scopus.utb.elogim.com/record/display.uri?eid=2-s2.0-85121794424&origin=resultslist&sort=plf-f&src=s&sid=5b5924365d87681725a9d6c17daad1d5&sot=b&sdt=b&s=TITLE-ABS-KEY%28Assembly+of+polarity%2C+emotion+and+user+statistics+for+detection+of+fake+profiles+Notebook+for+PAN+at+CLEF+2020%29&sl=125&sessionSearchId=5b5924365d87681725a9d6c17daad1d5https://hdl.handle.net/20.500.12585/12286Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThe explosive growth of fake news on social networks has aroused great interest from researchers in different disciplines. To achieve efficient and effective detection of fake news requires scientific contributions from various disciplines, such as computational linguistics, artificial intelligence, and sociology. Here we illustrate how polarity, emotion, and user statistics can be used to detect fake profiles on Twitter’s social network. This paper presents a novel strategy for the characterization of the Twitter profile based on the generation of an assembly of polarity, emotion, and user statistics characteristics that serve as input to a set of classifiers. The results are part of our participation in the PAN 2020 in the CLEF in the task of Profiling Fake News Spreaders on Twitter. Copyright © 2020 for this paper by its authors.8 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2CEUR Workshop ProceedingsAssembly of polarity, emotion and user statistics for detection of fake profiles Notebook for PAN at CLEF 2020info:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Rumor;Social Media;DisinformationLEMBCartagena de IndiasAhmed, H., Traore, I., Saad, S. Detection of Online Fake News Using N-Gram Analysis and Machine Learning Techniques (2017) Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 10618 LNCS, pp. 127-138. Cited 297 times. http://springerlink.com/content/0302-9743/copyright/2005/ ISBN: 978-331969154-1 doi: 10.1007/978-3-319-69155-8_9Ahmed, H., Traore, I., Saad, S. Detecting opinion spams and fake news using text classification (2018) Security and Privacy, 1 (1), p. e9. Cited 205 times.Bondielli, A., Marcelloni, F. A survey on fake news and rumour detection techniques (2019) Information Sciences, 497, pp. 38-55. Cited 281 times. http://www.journals.elsevier.com/information-sciences/ doi: 10.1016/j.ins.2019.05.035Cui, L., Wang, S., Lee, D. Same: Sentiment-aware multi-modal embedding for detecting fake news (2019) Proceedings of the 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2019, pp. 41-48. Cited 63 times. http://dl.acm.org/citation.cfm?id=3341161 ISBN: 978-145036868-1 doi: 10.1145/3341161.3342894Ghanem, B., Rosso, P., Rangel, F. An Emotional Analysis of False Information in Social Media and News Articles (2020) ACM Transactions on Internet Technology, 20 (2), art. no. 3381750. Cited 111 times. http://dl.acm.org/citation.cfm?id=J780 doi: 10.1145/3381750Giachanou, A., Ríssola, E.A., Ghanem, B., Crestani, F., Rosso, P. The role of personality and linguistic patterns in discriminating between fake news spreaders and fact checkers (2020) Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12089 LNCS, pp. 181-192. Cited 37 times. https://www.springer.com/series/558 ISBN: 978-303051309-2 doi: 10.1007/978-3-030-51310-8_17Imran, M., Castillo, C., Diaz, F., Vieweg, S. Processing Social Media Messages in Mass Emergency: Survey Summary (2018) The Web Conference 2018 - Companion of the World Wide Web Conference, WWW 2018, pp. 507-511. Cited 65 times. http://dl.acm.org/citation.cfm?id=3184558 ISBN: 978-145035640-4 doi: 10.1145/3184558.3186242Jwa, H., Oh, D., Park, K., Kang, J.M., Lim, H. exBAKE: Automatic fake news detection model based on Bidirectional Encoder Representations from Transformers (BERT) (2019) Applied Sciences (Switzerland), 9 (19), art. no. 4062. Cited 111 times. https://res.mdpi.com/d_attachment/applsci/applsci-09-04062/article_deploy/applsci-09-04062-v4.pdf doi: 10.3390/app9194062Kochkina, E., Liakata, M., Augenstein, I. (2017) Turing at semeval-2017 task 8: Sequential approach to rumour stance classification with branch-lstm. Cited 39 times. arXiv preprint arXiv:1704.07221Lazer, D.M.J., Baum, M.A., Benkler, Y., Berinsky, A.J., Greenhill, K.M., Menczer, F., Metzger, M.J., (...), Zittrain, J.L. The science of fake news: Addressing fake news requires a multidisciplinary effort (2018) Science, 359 (6380), pp. 1094-1096. Cited 1877 times. http://science.sciencemag.org/content/359/6380/1094/tab-pdf doi: 10.1126/science.aao2998Long, Y. Fake news detection through multi-perspective speaker profiles (2017) Association for Computational Linguistics. Cited 8 times.Mohammad, S.M., Turney, P.D. Crowdsourcing a word-emotion association lexicon (Open Access) (2013) Computational Intelligence, 29 (3), pp. 436-465. Cited 1418 times. doi: 10.1111/j.1467-8640.2012.00460.xMoreno-Sandoval, L.G., Beltrán-Herrera, P., Vargas-Cruz, J.A., Sánchez-Barriga, C., Pomares-Quimbaya, A., Alvarado-Valencia, J.A., García-Díaz, J.C. CSL: A Combined Spanish lexicon: Resource for polarity classification and sentiment analysis (Open Access) (2017) ICEIS 2017 - Proceedings of the 19th International Conference on Enterprise Information Systems, 1, pp. 288-295. Cited 10 times. http://www.scitepress.org/DigitalLibrary/HomePage.aspx ISBN: 978-989758247-9 doi: 10.5220/0006336402880295Potthast, M., Gollub, T., Wiegmann, M., Stein, B. TIRA Integrated Research Architecture (2019) Information Retrieval Evaluation in a Changing World. Cited 250 times. Ferro, N., Peters, C. (eds) Springer (Sep)Rangel, F., Franco-Salvador, M., Rosso, P. A Low Dimensionality Representation for Language Variety Identification (2016) International Conference on Intelligent Text Processing and Computational Linguistics, pp. 156-169. Cited 46 times. SpringerRangel, F., Giachanou, A., Ghanem, B., Rosso, P. Overview of the 8th Author Profiling Task at PAN 2020: Profiling Fake News Spreaders on Twitter (Open Access) (2020) CEUR Workshop Proceedings, 2696. Cited 82 times. http://ceur-ws.org/Ruchansky, N., Seo, S., Liu, Y. CSI: A hybrid deep model for fake news detection (2017) International Conference on Information and Knowledge Management, Proceedings, Part F131841, pp. 797-806. Cited 599 times. ISBN: 978-145034918-5 doi: 10.1145/3132847.3132877Sharma, K., Qian, F., Jiang, H., Ruchansky, N., Zhang, M., Liu, Y. Combating fake news: A survey on identification and mitigation techniques (Open Access) (2019) ACM Transactions on Intelligent Systems and Technology, 10 (3), art. no. a21. Cited 234 times. http://dl.acm.org/citation.cfm?id=J1318 doi: 10.1145/3305260Shu, K., Wang, S., Liu, H. Understanding User Profiles on Social Media for Fake News Detection (Open Access) (2018) Proceedings - IEEE 1st Conference on Multimedia Information Processing and Retrieval, MIPR 2018, pp. 430-435. Cited 202 times. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8370891 ISBN: 978-153861857-8 doi: 10.1109/MIPR.2018.00092Shu, K., Sliva, A., Wang, S., Tang, J., Liu, H. Fake news detection on social media: A data mining perspective (2017) ACM SIGKDD explorations newsletter, 19 (1), pp. 22-36. Cited 1506 times.Wynne, H.E., Wint, Z.Z. Content based fake news detection using n-gram models (2019) Proceedings of the 21st International Conference on Information Integration and Web-based Applications & Services, pp. 669-673. Cited 21 times.Zhou, X., Zafarani, R. Fake news detection: An interdisciplinary research (2019) The Web Conference 2019 - Companion of the World Wide Web Conference, WWW 2019, p. 1292. Cited 14 times. http://dl.acm.org/citation.cfm?id=3308560 ISBN: 978-145036675-5 doi: 10.1145/3308560.3316476http://purl.org/coar/resource_type/c_6501ORIGINALmorenosandoval_2020.pdfmorenosandoval_2020.pdfapplication/pdf171078https://repositorio.utb.edu.co/bitstream/20.500.12585/12286/1/morenosandoval_2020.pdf3bcf3a1ce5090f303b734c9c81cacb84MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12286/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12286/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTmorenosandoval_2020.pdf.txtmorenosandoval_2020.pdf.txtExtracted texttext/plain20705https://repositorio.utb.edu.co/bitstream/20.500.12585/12286/4/morenosandoval_2020.pdf.txted738e8ec37d9b8faa92be5bae764029MD54THUMBNAILmorenosandoval_2020.pdf.jpgmorenosandoval_2020.pdf.jpgGenerated Thumbnailimage/jpeg5192https://repositorio.utb.edu.co/bitstream/20.500.12585/12286/5/morenosandoval_2020.pdf.jpg933ce216960ed90173ce2a7de4b18ee3MD5520.500.12585/12286oai:repositorio.utb.edu.co:20.500.12585/122862023-07-22 00:17:56.069Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=