Clustering Techniques Performance for the Coordination of Adaptive Overcurrent Protections

Inclusion of distributed generation and topological changes in a network originate several operating scenarios. For this reason, techniques that adjust the configuration of overcurrent relays have been developed in order to provide protection coordination strategies capable of operating in different...

Full description

Autores:
Barranco, Carlos, A.
Orozco Henao, C.
Marín Quintero, J.
Mora Flórez, J.
Herrera Orozco, A.
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12353
Acceso en línea:
https://hdl.handle.net/20.500.12585/12353
Palabra clave:
Overcurrent Protection;
Microgrid;
Fault Current Limiters
LEMB
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_b8020c8f769889dcca4b2927f82e05ee
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12353
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Clustering Techniques Performance for the Coordination of Adaptive Overcurrent Protections
title Clustering Techniques Performance for the Coordination of Adaptive Overcurrent Protections
spellingShingle Clustering Techniques Performance for the Coordination of Adaptive Overcurrent Protections
Overcurrent Protection;
Microgrid;
Fault Current Limiters
LEMB
title_short Clustering Techniques Performance for the Coordination of Adaptive Overcurrent Protections
title_full Clustering Techniques Performance for the Coordination of Adaptive Overcurrent Protections
title_fullStr Clustering Techniques Performance for the Coordination of Adaptive Overcurrent Protections
title_full_unstemmed Clustering Techniques Performance for the Coordination of Adaptive Overcurrent Protections
title_sort Clustering Techniques Performance for the Coordination of Adaptive Overcurrent Protections
dc.creator.fl_str_mv Barranco, Carlos, A.
Orozco Henao, C.
Marín Quintero, J.
Mora Flórez, J.
Herrera Orozco, A.
dc.contributor.author.none.fl_str_mv Barranco, Carlos, A.
Orozco Henao, C.
Marín Quintero, J.
Mora Flórez, J.
Herrera Orozco, A.
dc.subject.keywords.spa.fl_str_mv Overcurrent Protection;
Microgrid;
Fault Current Limiters
topic Overcurrent Protection;
Microgrid;
Fault Current Limiters
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description Inclusion of distributed generation and topological changes in a network originate several operating scenarios. For this reason, techniques that adjust the configuration of overcurrent relays have been developed in order to provide protection coordination strategies capable of operating in different schemes. However, the adjustments allowed by these devices are limited. Thus, scenario grouping techniques are proposed to reduce the number of required configurations. This paper aims to evaluate the performance of different grouping techniques with input parameters for coordination strategies of electrical overcurrent protections, where it is required to associate the different modes of operation of a distribution network. For the clustering process, unsupervised learning techniques such as K-means, K-medoids and Agglomerative Hierarchical Clustering were employed. Additionally, for the input characteristics, fault currents, nominal currents and other parameters obtained from the electrical system were taken into account. From the results obtained when evaluating different combinations of techniques and inputs, it is important to mention that the characteristics that describe the different modes of operation necessary for the grouping are decisive for the coordination strategies of electrical protections and that it is not possible to establish a significant difference between the clustering techniques evaluated. Lastly, the combination that presents the best performance was K-means: Manhattan and maximum short-circuit phase currents per relay with a sum of operation time of 428.72s and zero restriction violation. © 2022 IEEE.
publishDate 2022
dc.date.issued.none.fl_str_mv 2022
dc.date.accessioned.none.fl_str_mv 2023-07-21T16:26:30Z
dc.date.available.none.fl_str_mv 2023-07-21T16:26:30Z
dc.date.submitted.none.fl_str_mv 2023
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
status_str draft
dc.identifier.citation.spa.fl_str_mv Carlos, A. B., Henao, C. O., Quintero, J. M., Flórez, J. M., & Orozco, A. H. (2022, November). Clustering techniques performance for the coordination of adaptive overcurrent protections. In 2022 IEEE ANDESCON (pp. 1-6). IEEE.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12353
dc.identifier.doi.none.fl_str_mv 10.1109/ANDESCON56260.2022.9989786
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Carlos, A. B., Henao, C. O., Quintero, J. M., Flórez, J. M., & Orozco, A. H. (2022, November). Clustering techniques performance for the coordination of adaptive overcurrent protections. In 2022 IEEE ANDESCON (pp. 1-6). IEEE.
10.1109/ANDESCON56260.2022.9989786
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12353
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 6 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv 2022 IEEE ANDESCON: Technology and Innovation for Andean Industry
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12353/1/Clustering%20Techniques%20Performance%20for%20the%20Coordination%20of%20Adaptive%20Overcurrent%20Protections%20_%20IEEE%20Conference%20Publication%20_%20IEEE%20Xplore.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12353/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12353/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12353/4/Clustering%20Techniques%20Performance%20for%20the%20Coordination%20of%20Adaptive%20Overcurrent%20Protections%20_%20IEEE%20Conference%20Publication%20_%20IEEE%20Xplore.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12353/5/Clustering%20Techniques%20Performance%20for%20the%20Coordination%20of%20Adaptive%20Overcurrent%20Protections%20_%20IEEE%20Conference%20Publication%20_%20IEEE%20Xplore.pdf.jpg
bitstream.checksum.fl_str_mv 6ff250d03ff6e9752a1d720010d3387b
4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
2c16224a18964fa73fa11419638d580c
e99f8c92db59f5d634c9fa88318243f4
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021717633269760
spelling Barranco, Carlos, A.b40f260a-6c43-426c-9b8f-6bc5d0c17509Orozco Henao, C.f3b2ff13-484c-4dac-bcb1-758cc0fd7af0Marín Quintero, J.1eb91321-8dee-42b2-99f8-3f2421582accMora Flórez, J.14954436-c2b6-4ab2-9194-071ad9e7aaeeHerrera Orozco, A.4f70fbde-ddd5-40d5-aa46-ab06c5dd3aea2023-07-21T16:26:30Z2023-07-21T16:26:30Z20222023Carlos, A. B., Henao, C. O., Quintero, J. M., Flórez, J. M., & Orozco, A. H. (2022, November). Clustering techniques performance for the coordination of adaptive overcurrent protections. In 2022 IEEE ANDESCON (pp. 1-6). IEEE.https://hdl.handle.net/20.500.12585/1235310.1109/ANDESCON56260.2022.9989786Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarInclusion of distributed generation and topological changes in a network originate several operating scenarios. For this reason, techniques that adjust the configuration of overcurrent relays have been developed in order to provide protection coordination strategies capable of operating in different schemes. However, the adjustments allowed by these devices are limited. Thus, scenario grouping techniques are proposed to reduce the number of required configurations. This paper aims to evaluate the performance of different grouping techniques with input parameters for coordination strategies of electrical overcurrent protections, where it is required to associate the different modes of operation of a distribution network. For the clustering process, unsupervised learning techniques such as K-means, K-medoids and Agglomerative Hierarchical Clustering were employed. Additionally, for the input characteristics, fault currents, nominal currents and other parameters obtained from the electrical system were taken into account. From the results obtained when evaluating different combinations of techniques and inputs, it is important to mention that the characteristics that describe the different modes of operation necessary for the grouping are decisive for the coordination strategies of electrical protections and that it is not possible to establish a significant difference between the clustering techniques evaluated. Lastly, the combination that presents the best performance was K-means: Manhattan and maximum short-circuit phase currents per relay with a sum of operation time of 428.72s and zero restriction violation. © 2022 IEEE.6 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf22022 IEEE ANDESCON: Technology and Innovation for Andean IndustryClustering Techniques Performance for the Coordination of Adaptive Overcurrent Protectionsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Overcurrent Protection;Microgrid;Fault Current LimitersLEMBCartagena de IndiasBritish Petroleum: 2020 Edition https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/energyoutlook/bp-energy-outlook-2020.pdfTon, D.T., Smith, M.A. The U.S. Department of Energy's Microgrid Initiative (2012) Electricity Journal, 25 (8), pp. 84-94. Cited 417 times. doi: 10.1016/j.tej.2012.09.013Theo, W.L., Lim, J.S., Ho, W.S., Hashim, H., Lee, C.T. Review of distributed generation (DG) system planning and optimisation techniques: Comparison of numerical and mathematical modelling methods (2017) Renewable and Sustainable Energy Reviews, 67, pp. 531-573. Cited 211 times. https://www.journals.elsevier.com/renewable-and-sustainable-energy-reviews doi: 10.1016/j.rser.2016.09.063Brearley, B.J., Prabu, R.R. A review on issues and approaches for microgrid protection (2017) Renewable and Sustainable Energy Reviews, 67, pp. 988-997. Cited 176 times. https://www.journals.elsevier.com/renewable-and-sustainable-energy-reviews doi: 10.1016/j.rser.2016.09.047Souza, F.C., Souza, B.A. Adaptive overcurrent adjustment settings: A case study using RTDS® (2013) 2013 IEEE PES Conference on Innovative Smart Grid Technologies, ISGT LA 2013, art. no. 6554469. Cited 13 times. ISBN: 978-146735274-1 doi: 10.1109/ISGT-LA.2013.6554469Zhang, G., Guo, B., Liang, Y. A classification method for adaptive relay protection setting system based on clustering analysis (2011) APAP 2011 - Proceedings: 2011 International Conference on Advanced Power System Automation and Protection, 3, art. no. 6180633, pp. 1819-1823. Cited 3 times. ISBN: 978-142449619-8 doi: 10.1109/APAP.2011.6180633Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y. An efficient k-means clustering algorithms: Analysis and implementation (2002) IEEE Transactions on Pattern Analysis and Machine Intelligence, 24 (7), pp. 881-892. Cited 4154 times. doi: 10.1109/TPAMI.2002.1017616Dong, J., Qi, M. K-means optimization algorithm for solving clustering problem (2009) Proceedings - 2009 2nd International Workshop on Knowledge Discovery and Data Mining, WKKD 2009, art. no. 4771876, pp. 52-55. Cited 16 times. ISBN: 978-076953543-2 doi: 10.1109/WKDD.2009.85Kapil, S., Chawla, M. Performance evaluation of K-means clustering algorithm with various distance metrics (2016) 1st IEEE International Conference on Power Electronics, Intelligent Control and Energy Systems, ICPEICES 2016, art. no. 7853264. Cited 35 times. ISBN: 978-146738587-9 doi: 10.1109/ICPEICES.2016.7853264Ojaghi, M., Mohammadi, V. Use of Clustering to Reduce the Number of Different Setting Groups for Adaptive Coordination of Overcurrent Relays (2018) IEEE Transactions on Power Delivery, 33 (3), pp. 1204-1212. Cited 72 times. doi: 10.1109/TPWRD.2017.2749321Samadi, A., Mohammadi Chabanloo, R. Adaptive coordination of overcurrent relays in active distribution networks based on independent change of relays’ setting groups (2020) International Journal of Electrical Power and Energy Systems, 120, art. no. 106026. Cited 35 times. https://www.journals.elsevier.com/international-journal-of-electrical-power-and-energy-systems doi: 10.1016/j.ijepes.2020.106026Ghadiri, S.M.E., Mazlumi, K. Adaptive protection scheme for microgrids based on SOM clustering technique (2020) Applied Soft Computing Journal, 88, art. no. 106062. Cited 39 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/621920/description#description doi: 10.1016/j.asoc.2020.106062Saldarriaga-Zuluaga, S.D., Zuluaga, C.D., Muñoz-Galeano, N., López-Lezama, J.M. Optimal coordination of overcurrent relays in microgrids using a metaheuristic approach (2020) International Journal of Engineering Research and Technology, 13 (9), pp. 2213-2218. http://www.irphouse.com/ijert20/ijertv13n9_15.pdfGers, J.M., Holmes, E.J. (2011) Institution of Electrical Engineers: Protection of Electricity Distribution Networks. Energy Engineering Institution of Engineering and Technology, ISBN 9781849192231Overcurrent and Feeder Protection-SIPROTEC 7SJ82-Siemens Ag siemens.com Global Website https://cache.industry.siemens.comYang, H., Liu, X., Zhang, D., Chen, T., Li, C., Huang, W. Machine learning for power system protection and control (2021) Electricity Journal, 34 (1), art. no. 106881. Cited 22 times. http://www.electricity-online.com doi: 10.1016/j.tej.2020.106881Mirjalili, S. (2020) Evolutionary Machine Learning Techniques: Algorithms and Applications. Cited 190 times. Springer Nature SingaporeSaxena, A., Prasad, M., Gupta, A., Bharill, N., Patel, O.P., Tiwari, A., Er, M.J., (...), Lin, C.-T. A review of clustering techniques and developments (2017) Neurocomputing, 267, pp. 664-681. Cited 646 times. www.elsevier.com/locate/neucom doi: 10.1016/j.neucom.2017.06.053K-means Clustering-MATLAB Kmeans-MathWorks https://la.mathworks.com/help/stats/kmeans.html?lang=enCao, D., Yang, B. An improved k-medoids clustering algorithm (2010) 2010 The 2nd International Conference on Computer and Automation Engineering, ICCAE 2010, 3, art. no. 5452085, pp. 132-135. Cited 27 times. ISBN: 978-142445585-0 doi: 10.1109/ICCAE.2010.5452085Nazari, Z., Kang, D., Asharif, M.R., Sung, Y., Ogawa, S. A new hierarchical clustering algorithm (2015) ICIIBMS 2015 - International Conference on Intelligent Informatics and Biomedical Sciences, art. no. 7439517, pp. 148-152. Cited 45 times. ISBN: 978-147998562-3 doi: 10.1109/ICIIBMS.2015.7439517Construct Agglomerative Clusters from Data-MATLAB Clusterdata https://la.mathworks.com/help/stats/clusterdata.html(2001) IEEE 34 Node Test Feeder. Cited 5 times. Distribution System Analysis Subcommittee https://site.ieee.org/pes-Testfeeders/resources/http://purl.org/coar/resource_type/c_6501ORIGINALClustering Techniques Performance for the Coordination of Adaptive Overcurrent Protections _ IEEE Conference Publication _ IEEE Xplore.pdfClustering Techniques Performance for the Coordination of Adaptive Overcurrent Protections _ IEEE Conference Publication _ IEEE Xplore.pdfapplication/pdf483387https://repositorio.utb.edu.co/bitstream/20.500.12585/12353/1/Clustering%20Techniques%20Performance%20for%20the%20Coordination%20of%20Adaptive%20Overcurrent%20Protections%20_%20IEEE%20Conference%20Publication%20_%20IEEE%20Xplore.pdf6ff250d03ff6e9752a1d720010d3387bMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12353/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12353/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTClustering Techniques Performance for the Coordination of Adaptive Overcurrent Protections _ IEEE Conference Publication _ IEEE Xplore.pdf.txtClustering Techniques Performance for the Coordination of Adaptive Overcurrent Protections _ IEEE Conference Publication _ IEEE Xplore.pdf.txtExtracted texttext/plain6684https://repositorio.utb.edu.co/bitstream/20.500.12585/12353/4/Clustering%20Techniques%20Performance%20for%20the%20Coordination%20of%20Adaptive%20Overcurrent%20Protections%20_%20IEEE%20Conference%20Publication%20_%20IEEE%20Xplore.pdf.txt2c16224a18964fa73fa11419638d580cMD54THUMBNAILClustering Techniques Performance for the Coordination of Adaptive Overcurrent Protections _ IEEE Conference Publication _ IEEE Xplore.pdf.jpgClustering Techniques Performance for the Coordination of Adaptive Overcurrent Protections _ IEEE Conference Publication _ IEEE Xplore.pdf.jpgGenerated Thumbnailimage/jpeg6523https://repositorio.utb.edu.co/bitstream/20.500.12585/12353/5/Clustering%20Techniques%20Performance%20for%20the%20Coordination%20of%20Adaptive%20Overcurrent%20Protections%20_%20IEEE%20Conference%20Publication%20_%20IEEE%20Xplore.pdf.jpge99f8c92db59f5d634c9fa88318243f4MD5520.500.12585/12353oai:repositorio.utb.edu.co:20.500.12585/123532023-07-22 00:17:40.196Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=