Conformastationary disk-haloes in Einstein–Maxwell gravity
An exact solution of the Einstein–Maxwell field equations for a conformastationary metric with magnetized disk-haloes sources is worked out in full. The characterization of the nature of the energy momentum tensor of the source is discussed. All the expressions are presented in terms of a solution o...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2015
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/9014
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/9014
- Palabra clave:
- Conformastationary space-time
Einstein–Maxwell equations
Exact solutions
Galactic halo
Relativistic disks
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_b72c04e0a0d43282e605dc80a2085b9b |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/9014 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
spelling |
2020-03-26T16:32:46Z2020-03-26T16:32:46Z2015General Relativity and Gravitation; Vol. 47, Núm. 5; pp. 1-1700017701https://hdl.handle.net/20.500.12585/901410.1007/s10714-015-1898-0Universidad Tecnológica de BolívarRepositorio UTB25225467000An exact solution of the Einstein–Maxwell field equations for a conformastationary metric with magnetized disk-haloes sources is worked out in full. The characterization of the nature of the energy momentum tensor of the source is discussed. All the expressions are presented in terms of a solution of the Laplace’s equation. A “generalization” of the Kuzmin solution of the Laplace’s equations is used as a particular example. The solution obtained is asymptotically flat in general and turns out to be free of singularities. All the relevant quantities show a reasonable physical behaviour. © 2015, Springer Science+Business Media New York.Recurso electrónicoapplication/pdfengSpringer New York LLChttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84927130185&doi=10.1007%2fs10714-015-1898-0&partnerID=40&md5=5d0d0a6afabf758e29da471ce4f9bf95Conformastationary disk-haloes in Einstein–Maxwell gravityinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Conformastationary space-timeEinstein–Maxwell equationsExact solutionsGalactic haloRelativistic disksGutiérrez-Piñeres A.C.Gutiérrez-Piñeres, A.C., González, G.A., Quevedo, H., (2013) Phys. Rev. D, 87, p. 044010Chakraborty, K., Rahaman, F., Ray, S., Nandi, A., Islam, N., (2014) Gen. Relativ. Gravit., 46, p. 1807Herrera, L., Di Prisco, A., Ibañez, J., Ospino, J., (2014) Phys. Rev. D, 89, p. 084034Gutiérrez-Piñeres, A.C., Lopez-Monsalvo, C.S., (2013) Quevedo, H.: arXiv preprint arXiv, 1306, p. 6591. , arXiv:1306.6591Stephani, H., Kramer, D., MacCallum, M., Hoenselaers, C., Herlt, E., (2003) Exact Solutions of Einstein’s Field Equations, , Cambridge University Press, Cambridge:Arfken, G., Mathematical Methods for Physicists (1966) Mathematical Methods for Physicists No, 1. , Academic Press, London:Katz, J., Bicák, J., Lynden-Bell, D., (1999) Class. Quantum Gravity, 16, p. 4023Synge, J., (1960) Relativity: The General Theory, , North-Holland Pub. Co.Interscience Publishers, Amsterdamhttp://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9014/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9014oai:repositorio.utb.edu.co:20.500.12585/90142021-02-02 14:40:01.802Repositorio Institucional UTBrepositorioutb@utb.edu.co |
dc.title.none.fl_str_mv |
Conformastationary disk-haloes in Einstein–Maxwell gravity |
title |
Conformastationary disk-haloes in Einstein–Maxwell gravity |
spellingShingle |
Conformastationary disk-haloes in Einstein–Maxwell gravity Conformastationary space-time Einstein–Maxwell equations Exact solutions Galactic halo Relativistic disks |
title_short |
Conformastationary disk-haloes in Einstein–Maxwell gravity |
title_full |
Conformastationary disk-haloes in Einstein–Maxwell gravity |
title_fullStr |
Conformastationary disk-haloes in Einstein–Maxwell gravity |
title_full_unstemmed |
Conformastationary disk-haloes in Einstein–Maxwell gravity |
title_sort |
Conformastationary disk-haloes in Einstein–Maxwell gravity |
dc.subject.keywords.none.fl_str_mv |
Conformastationary space-time Einstein–Maxwell equations Exact solutions Galactic halo Relativistic disks |
topic |
Conformastationary space-time Einstein–Maxwell equations Exact solutions Galactic halo Relativistic disks |
description |
An exact solution of the Einstein–Maxwell field equations for a conformastationary metric with magnetized disk-haloes sources is worked out in full. The characterization of the nature of the energy momentum tensor of the source is discussed. All the expressions are presented in terms of a solution of the Laplace’s equation. A “generalization” of the Kuzmin solution of the Laplace’s equations is used as a particular example. The solution obtained is asymptotically flat in general and turns out to be free of singularities. All the relevant quantities show a reasonable physical behaviour. © 2015, Springer Science+Business Media New York. |
publishDate |
2015 |
dc.date.issued.none.fl_str_mv |
2015 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:32:46Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:32:46Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasVersion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
General Relativity and Gravitation; Vol. 47, Núm. 5; pp. 1-17 |
dc.identifier.issn.none.fl_str_mv |
00017701 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/9014 |
dc.identifier.doi.none.fl_str_mv |
10.1007/s10714-015-1898-0 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
25225467000 |
identifier_str_mv |
General Relativity and Gravitation; Vol. 47, Núm. 5; pp. 1-17 00017701 10.1007/s10714-015-1898-0 Universidad Tecnológica de Bolívar Repositorio UTB 25225467000 |
url |
https://hdl.handle.net/20.500.12585/9014 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessRights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_16ec |
eu_rights_str_mv |
restrictedAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer New York LLC |
publisher.none.fl_str_mv |
Springer New York LLC |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84927130185&doi=10.1007%2fs10714-015-1898-0&partnerID=40&md5=5d0d0a6afabf758e29da471ce4f9bf95 |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/9014/1/MiniProdInv.png |
bitstream.checksum.fl_str_mv |
0cb0f101a8d16897fb46fc914d3d7043 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021791775981568 |