Conformastationary disk-haloes in Einstein–Maxwell gravity

An exact solution of the Einstein–Maxwell field equations for a conformastationary metric with magnetized disk-haloes sources is worked out in full. The characterization of the nature of the energy momentum tensor of the source is discussed. All the expressions are presented in terms of a solution o...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2015
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/9014
Acceso en línea:
https://hdl.handle.net/20.500.12585/9014
Palabra clave:
Conformastationary space-time
Einstein–Maxwell equations
Exact solutions
Galactic halo
Relativistic disks
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_b72c04e0a0d43282e605dc80a2085b9b
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/9014
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
spelling 2020-03-26T16:32:46Z2020-03-26T16:32:46Z2015General Relativity and Gravitation; Vol. 47, Núm. 5; pp. 1-1700017701https://hdl.handle.net/20.500.12585/901410.1007/s10714-015-1898-0Universidad Tecnológica de BolívarRepositorio UTB25225467000An exact solution of the Einstein–Maxwell field equations for a conformastationary metric with magnetized disk-haloes sources is worked out in full. The characterization of the nature of the energy momentum tensor of the source is discussed. All the expressions are presented in terms of a solution of the Laplace’s equation. A “generalization” of the Kuzmin solution of the Laplace’s equations is used as a particular example. The solution obtained is asymptotically flat in general and turns out to be free of singularities. All the relevant quantities show a reasonable physical behaviour. © 2015, Springer Science+Business Media New York.Recurso electrónicoapplication/pdfengSpringer New York LLChttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84927130185&doi=10.1007%2fs10714-015-1898-0&partnerID=40&md5=5d0d0a6afabf758e29da471ce4f9bf95Conformastationary disk-haloes in Einstein–Maxwell gravityinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Conformastationary space-timeEinstein–Maxwell equationsExact solutionsGalactic haloRelativistic disksGutiérrez-Piñeres A.C.Gutiérrez-Piñeres, A.C., González, G.A., Quevedo, H., (2013) Phys. Rev. D, 87, p. 044010Chakraborty, K., Rahaman, F., Ray, S., Nandi, A., Islam, N., (2014) Gen. Relativ. Gravit., 46, p. 1807Herrera, L., Di Prisco, A., Ibañez, J., Ospino, J., (2014) Phys. Rev. D, 89, p. 084034Gutiérrez-Piñeres, A.C., Lopez-Monsalvo, C.S., (2013) Quevedo, H.: arXiv preprint arXiv, 1306, p. 6591. , arXiv:1306.6591Stephani, H., Kramer, D., MacCallum, M., Hoenselaers, C., Herlt, E., (2003) Exact Solutions of Einstein’s Field Equations, , Cambridge University Press, Cambridge:Arfken, G., Mathematical Methods for Physicists (1966) Mathematical Methods for Physicists No, 1. , Academic Press, London:Katz, J., Bicák, J., Lynden-Bell, D., (1999) Class. Quantum Gravity, 16, p. 4023Synge, J., (1960) Relativity: The General Theory, , North-Holland Pub. Co.Interscience Publishers, Amsterdamhttp://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9014/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9014oai:repositorio.utb.edu.co:20.500.12585/90142021-02-02 14:40:01.802Repositorio Institucional UTBrepositorioutb@utb.edu.co
dc.title.none.fl_str_mv Conformastationary disk-haloes in Einstein–Maxwell gravity
title Conformastationary disk-haloes in Einstein–Maxwell gravity
spellingShingle Conformastationary disk-haloes in Einstein–Maxwell gravity
Conformastationary space-time
Einstein–Maxwell equations
Exact solutions
Galactic halo
Relativistic disks
title_short Conformastationary disk-haloes in Einstein–Maxwell gravity
title_full Conformastationary disk-haloes in Einstein–Maxwell gravity
title_fullStr Conformastationary disk-haloes in Einstein–Maxwell gravity
title_full_unstemmed Conformastationary disk-haloes in Einstein–Maxwell gravity
title_sort Conformastationary disk-haloes in Einstein–Maxwell gravity
dc.subject.keywords.none.fl_str_mv Conformastationary space-time
Einstein–Maxwell equations
Exact solutions
Galactic halo
Relativistic disks
topic Conformastationary space-time
Einstein–Maxwell equations
Exact solutions
Galactic halo
Relativistic disks
description An exact solution of the Einstein–Maxwell field equations for a conformastationary metric with magnetized disk-haloes sources is worked out in full. The characterization of the nature of the energy momentum tensor of the source is discussed. All the expressions are presented in terms of a solution of the Laplace’s equation. A “generalization” of the Kuzmin solution of the Laplace’s equations is used as a particular example. The solution obtained is asymptotically flat in general and turns out to be free of singularities. All the relevant quantities show a reasonable physical behaviour. © 2015, Springer Science+Business Media New York.
publishDate 2015
dc.date.issued.none.fl_str_mv 2015
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:32:46Z
dc.date.available.none.fl_str_mv 2020-03-26T16:32:46Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.hasVersion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv General Relativity and Gravitation; Vol. 47, Núm. 5; pp. 1-17
dc.identifier.issn.none.fl_str_mv 00017701
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/9014
dc.identifier.doi.none.fl_str_mv 10.1007/s10714-015-1898-0
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 25225467000
identifier_str_mv General Relativity and Gravitation; Vol. 47, Núm. 5; pp. 1-17
00017701
10.1007/s10714-015-1898-0
Universidad Tecnológica de Bolívar
Repositorio UTB
25225467000
url https://hdl.handle.net/20.500.12585/9014
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessRights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer New York LLC
publisher.none.fl_str_mv Springer New York LLC
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-84927130185&doi=10.1007%2fs10714-015-1898-0&partnerID=40&md5=5d0d0a6afabf758e29da471ce4f9bf95
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/9014/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021791775981568