Toward an automatic 3D measurement of skin wheals from skin prick tests

The skin prick test (SPT) is the standard method for the diagnosis of allergies. It consists in placing an array of allergen drops on the skin of a patient, typically the volar forearm, and pricking them with a lancet to provoke a specific dermal reaction described as a wheal. The diagnosis is perfo...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/9187
Acceso en línea:
https://hdl.handle.net/20.500.12585/9187
Palabra clave:
3D medical imaging
3D skin measurement
Allergy diagnosis
Fourier transform profilometry
Fringe projection
Skin prick test
Skin wheals
Allergies
Data handling
Diagnosis
Imaging systems
Medical imaging
Profilometry
3D data processing
Automatic measurements
Conventional approach
Diagnosis of allergies
Fourier transform profilometry
Fringe projection
Observer variations
Skin prick test
Image reconstruction
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_b6d6c3d436c40af5a60be7f01964bc16
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/9187
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Toward an automatic 3D measurement of skin wheals from skin prick tests
title Toward an automatic 3D measurement of skin wheals from skin prick tests
spellingShingle Toward an automatic 3D measurement of skin wheals from skin prick tests
3D medical imaging
3D skin measurement
Allergy diagnosis
Fourier transform profilometry
Fringe projection
Skin prick test
Skin wheals
Allergies
Data handling
Diagnosis
Imaging systems
Medical imaging
Profilometry
3D data processing
Automatic measurements
Conventional approach
Diagnosis of allergies
Fourier transform profilometry
Fringe projection
Observer variations
Skin prick test
Image reconstruction
title_short Toward an automatic 3D measurement of skin wheals from skin prick tests
title_full Toward an automatic 3D measurement of skin wheals from skin prick tests
title_fullStr Toward an automatic 3D measurement of skin wheals from skin prick tests
title_full_unstemmed Toward an automatic 3D measurement of skin wheals from skin prick tests
title_sort Toward an automatic 3D measurement of skin wheals from skin prick tests
dc.contributor.editor.none.fl_str_mv Harding K.G.
Zhang, Song
dc.subject.keywords.none.fl_str_mv 3D medical imaging
3D skin measurement
Allergy diagnosis
Fourier transform profilometry
Fringe projection
Skin prick test
Skin wheals
Allergies
Data handling
Diagnosis
Imaging systems
Medical imaging
Profilometry
3D data processing
Automatic measurements
Conventional approach
Diagnosis of allergies
Fourier transform profilometry
Fringe projection
Observer variations
Skin prick test
Image reconstruction
topic 3D medical imaging
3D skin measurement
Allergy diagnosis
Fourier transform profilometry
Fringe projection
Skin prick test
Skin wheals
Allergies
Data handling
Diagnosis
Imaging systems
Medical imaging
Profilometry
3D data processing
Automatic measurements
Conventional approach
Diagnosis of allergies
Fourier transform profilometry
Fringe projection
Observer variations
Skin prick test
Image reconstruction
description The skin prick test (SPT) is the standard method for the diagnosis of allergies. It consists in placing an array of allergen drops on the skin of a patient, typically the volar forearm, and pricking them with a lancet to provoke a specific dermal reaction described as a wheal. The diagnosis is performed by measuring the diameter of the skin wheals, although wheals are not usually circular which leads to measurement inconsistencies. Moreover, the conventional approach is to measure their size with a ruler. This method has been proven prone to inter- and intra-observer variations. We have developed a 3D imaging system for the 3D reconstruction of the SPT. Here, we describe the proposed method for the automatic measurements of the wheals based on 3D data processing to yield reliable results. The method is based on a robust parametric fitting to the 3D data for obtaining the diameter directly. We evaluate the repeatability of the system under 3D reconstructions for different object poses. Although the system provides higher accuracy in the measurement, we compare the results to those produced by a physician. Copyright © 2019 SPIE.
publishDate 2019
dc.date.issued.none.fl_str_mv 2019
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:33:10Z
dc.date.available.none.fl_str_mv 2020-03-26T16:33:10Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_c94f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.hasversion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Conferencia
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Proceedings of SPIE - The International Society for Optical Engineering; Vol. 10991
dc.identifier.isbn.none.fl_str_mv 9781510626478
dc.identifier.issn.none.fl_str_mv 0277786X
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/9187
dc.identifier.doi.none.fl_str_mv 10.1117/12.2519034
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 24329839300
36142156300
57192270016
57117284600
57203321995
6507678324
7004348301
identifier_str_mv Proceedings of SPIE - The International Society for Optical Engineering; Vol. 10991
9781510626478
0277786X
10.1117/12.2519034
Universidad Tecnológica de Bolívar
Repositorio UTB
24329839300
36142156300
57192270016
57117284600
57203321995
6507678324
7004348301
url https://hdl.handle.net/20.500.12585/9187
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.conferencedate.none.fl_str_mv 16 April 2019 through 17 April 2019
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv SPIE
publisher.none.fl_str_mv SPIE
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85072573302&doi=10.1117%2f12.2519034&partnerID=40&md5=ebbb2b54fcb04273ed475acc1703531c
Scopus2-s2.0-85072573302
institution Universidad Tecnológica de Bolívar
dc.source.event.none.fl_str_mv Dimensional Optical Metrology and Inspection for Practical Applications VIII 2019
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/9187/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021658558595072
spelling Harding K.G.Zhang, SongMarrugo A.G.Romero L.A.Pineda J.Vargas R.Altamar Mercado, HernandoMarrugo J.Meneses J.2020-03-26T16:33:10Z2020-03-26T16:33:10Z2019Proceedings of SPIE - The International Society for Optical Engineering; Vol. 1099197815106264780277786Xhttps://hdl.handle.net/20.500.12585/918710.1117/12.2519034Universidad Tecnológica de BolívarRepositorio UTB243298393003614215630057192270016571172846005720332199565076783247004348301The skin prick test (SPT) is the standard method for the diagnosis of allergies. It consists in placing an array of allergen drops on the skin of a patient, typically the volar forearm, and pricking them with a lancet to provoke a specific dermal reaction described as a wheal. The diagnosis is performed by measuring the diameter of the skin wheals, although wheals are not usually circular which leads to measurement inconsistencies. Moreover, the conventional approach is to measure their size with a ruler. This method has been proven prone to inter- and intra-observer variations. We have developed a 3D imaging system for the 3D reconstruction of the SPT. Here, we describe the proposed method for the automatic measurements of the wheals based on 3D data processing to yield reliable results. The method is based on a robust parametric fitting to the 3D data for obtaining the diameter directly. We evaluate the repeatability of the system under 3D reconstructions for different object poses. Although the system provides higher accuracy in the measurement, we compare the results to those produced by a physician. Copyright © 2019 SPIE.Universidad Tecnológica de Pereira, UTP: C2018P018, C2018P005 Departamento Administrativo de Ciencia, Tecnología e Innovación (COLCIENCIAS), COLCIENCIAS 538871552485The Society of Photo-Optical Instrumentation Engineers (SPIE)This work has been partly funded by Colciencias (Fondo Nacional de Financiamiento para la Ciencia, la Tec-nología y la Innovación Francisco Joséde Caldas) project 538871552485, and by Universidad Tecnológica de Bolívar projects C2018P005 and C2018P018. J. Pineda and R. Vargas thank Universidad Tecnológica de Bolívar for a post-graduate scholarship. H. Altamar-Mercado thanks Colciencias doctoral support program 785-2017.Recurso electrónicoapplication/pdfengSPIEhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85072573302&doi=10.1117%2f12.2519034&partnerID=40&md5=ebbb2b54fcb04273ed475acc1703531cScopus2-s2.0-85072573302Dimensional Optical Metrology and Inspection for Practical Applications VIII 2019Toward an automatic 3D measurement of skin wheals from skin prick testsinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94f3D medical imaging3D skin measurementAllergy diagnosisFourier transform profilometryFringe projectionSkin prick testSkin whealsAllergiesData handlingDiagnosisImaging systemsMedical imagingProfilometry3D data processingAutomatic measurementsConventional approachDiagnosis of allergiesFourier transform profilometryFringe projectionObserver variationsSkin prick testImage reconstruction16 April 2019 through 17 April 2019Buyuktiryaki, B., Sahiner, U.M., Karabulut, E., Cavkaytar, O., Tuncer, A., Sekerel, B.E., Optimizing the use of a skin prick test device on children (2013) International Archives of Allergy and Immunology, 162 (1), pp. 65-70Venter, C., Arshad, S.H., Epidemiology of food allergy (2011) Pediatric Clinics of North America, 58 (2), pp. 327-349Marrugo, J., Hernández, L., Villalba, V., Prevalence of self-reported food allergy in cartagena (Colombia) population (2008) Allergologia et Immunopathologia, 36 (6), pp. 320-324Tang, M.L.K., Mullins, R.J., Food allergy: Is prevalence increasing? (2017) Internal Medicine Journal, 47 (3), pp. 256-261Andersen, H.H., Lundgaard, A.C., Petersen, A.S., Hauberg, L.E., Sharma, N., Hansen, S.D., Elberling, J., Arendt-Nielsen, L., The lancet weight determines wheal diameter in response to skin prick testing with histamine (2016) PLoS ONE, 11 (5)Konstantinou, G.N., Bousquet, P.-J., Zuberbier, T., Papadopoulos, N.G., The longest wheal diameter Is the optimal measurement for the evaluation of skin prick tests (2010) International Archives of Allergy and Immunology, 151 (4), pp. 343-345Wöhrl, S., Vigl, K., Binder, M., Stingl, G., Prinz, M., Automated measurement of skin prick tests: An advance towards exact calculation of wheal size (2006) Experimental Dermatology, 15 (2), pp. 119-124McCann, W.A., Ownby, D.R., The reproducibility of the allergy skin test scoring and interpretation by board-certified/board-eligible allergists (2002) Annals of Allergy, Asthma and Immunology, 89, pp. 368-371. , OctBulan, O., Improved wheal detection from skin prick test images (2014) IS&T/SPIE Electronic Imaging, p. 90240. , Niel, K. S. and Bingham, P. R., eds., SPIEJusto, X., Díaz, I., Gil, J.J., Gastaminza, G., Prick test: Evolution towards automated reading (2016) Allergy, 71 (8), pp. 1095-1102Dos Santos, R.V., Mlynek, A., Lima, H.C., Martus, P., Maurer, M., Beyond at weals: Validation of a three-dimensional imaging technology that will improve skin allergy research (2008) Clinical and Experimental Dermatology, 33 (6), pp. 772-775Justo, X., Díaz, I., Gil, J.J., Gastaminza, G., Medical device for automated prick test reading (2018) IEEE Journal of Biomedical and Health Informatics, 22 (3), pp. 895-903Takeda, M., Ina, H., Kobayashi, S., Fourier-transform method of fringe-pattern analysis for computerbased topography and interferometry (1982) JosA, 72 (1), pp. 156-160Cai, Z., Liu, X., Li, A., Tang, Q., Peng, X., Gao, B.Z., Phase-3d mapping method developed from back-projection stereovision model for fringe projection profilometry (2017) Optics Express, 25 (2), pp. 1262-1277Vargas, R., Marrugo, A.G., Pineda, J., Meneses, J., Romero, L.A., Camera-projector calibration methods with compensation of geometric distortions in fringe projection profilometry: A comparative study (2018) Opt. Pura Apl., 51 (3), pp. 1-10Pritt, M.D., Ghiglia, D.C., (1998) Two-dimensional Phase Unwrapping: Theory, Algorithms, and Software, , Wiley(2016) Matlab 9.0 and Computer Vision System Toolbox 7.1, , http://www.mathworks.com/products/computer-vision.htmlJolliffe, I.T., Cadima, J., Principal component analysis: A review and recent developments (2016) Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374 (2065), p. 20150202Quellec, G., Lamard, M., Josselin, P.M., Cazuguel, G., Cochener, B., Roux, C., Optimal wavelet transform for the detection of microaneurysms in retina photographs (2008) IEEE Transactions on Medical Imaging, 27 (9), pp. 1230-1241Burt, P., Adelson, E., The laplacian pyramid as a compact image code (1983) IEEE Transactions on Communications, 31 (4), pp. 532-540Paris, S., Hasinoff, S.W., Kautz, J., Local laplacian filters: Edge-aware image processing with a laplacian pyramid (2011) ACM Trans. Graph., 30 (4), pp. 68-71Shao, L., Zhen, X., Tao, D., Li, X., Spatio-temporal laplacian pyramid coding for action recognition (2014) IEEE Transactions on Cybernetics, 44 (6), pp. 817-827http://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9187/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9187oai:repositorio.utb.edu.co:20.500.12585/91872023-05-25 10:16:40.588Repositorio Institucional UTBrepositorioutb@utb.edu.co