Toward an automatic 3D measurement of skin wheals from skin prick tests
The skin prick test (SPT) is the standard method for the diagnosis of allergies. It consists in placing an array of allergen drops on the skin of a patient, typically the volar forearm, and pricking them with a lancet to provoke a specific dermal reaction described as a wheal. The diagnosis is perfo...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/9187
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/9187
- Palabra clave:
- 3D medical imaging
3D skin measurement
Allergy diagnosis
Fourier transform profilometry
Fringe projection
Skin prick test
Skin wheals
Allergies
Data handling
Diagnosis
Imaging systems
Medical imaging
Profilometry
3D data processing
Automatic measurements
Conventional approach
Diagnosis of allergies
Fourier transform profilometry
Fringe projection
Observer variations
Skin prick test
Image reconstruction
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_b6d6c3d436c40af5a60be7f01964bc16 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/9187 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
Toward an automatic 3D measurement of skin wheals from skin prick tests |
title |
Toward an automatic 3D measurement of skin wheals from skin prick tests |
spellingShingle |
Toward an automatic 3D measurement of skin wheals from skin prick tests 3D medical imaging 3D skin measurement Allergy diagnosis Fourier transform profilometry Fringe projection Skin prick test Skin wheals Allergies Data handling Diagnosis Imaging systems Medical imaging Profilometry 3D data processing Automatic measurements Conventional approach Diagnosis of allergies Fourier transform profilometry Fringe projection Observer variations Skin prick test Image reconstruction |
title_short |
Toward an automatic 3D measurement of skin wheals from skin prick tests |
title_full |
Toward an automatic 3D measurement of skin wheals from skin prick tests |
title_fullStr |
Toward an automatic 3D measurement of skin wheals from skin prick tests |
title_full_unstemmed |
Toward an automatic 3D measurement of skin wheals from skin prick tests |
title_sort |
Toward an automatic 3D measurement of skin wheals from skin prick tests |
dc.contributor.editor.none.fl_str_mv |
Harding K.G. Zhang, Song |
dc.subject.keywords.none.fl_str_mv |
3D medical imaging 3D skin measurement Allergy diagnosis Fourier transform profilometry Fringe projection Skin prick test Skin wheals Allergies Data handling Diagnosis Imaging systems Medical imaging Profilometry 3D data processing Automatic measurements Conventional approach Diagnosis of allergies Fourier transform profilometry Fringe projection Observer variations Skin prick test Image reconstruction |
topic |
3D medical imaging 3D skin measurement Allergy diagnosis Fourier transform profilometry Fringe projection Skin prick test Skin wheals Allergies Data handling Diagnosis Imaging systems Medical imaging Profilometry 3D data processing Automatic measurements Conventional approach Diagnosis of allergies Fourier transform profilometry Fringe projection Observer variations Skin prick test Image reconstruction |
description |
The skin prick test (SPT) is the standard method for the diagnosis of allergies. It consists in placing an array of allergen drops on the skin of a patient, typically the volar forearm, and pricking them with a lancet to provoke a specific dermal reaction described as a wheal. The diagnosis is performed by measuring the diameter of the skin wheals, although wheals are not usually circular which leads to measurement inconsistencies. Moreover, the conventional approach is to measure their size with a ruler. This method has been proven prone to inter- and intra-observer variations. We have developed a 3D imaging system for the 3D reconstruction of the SPT. Here, we describe the proposed method for the automatic measurements of the wheals based on 3D data processing to yield reliable results. The method is based on a robust parametric fitting to the 3D data for obtaining the diameter directly. We evaluate the repeatability of the system under 3D reconstructions for different object poses. Although the system provides higher accuracy in the measurement, we compare the results to those produced by a physician. Copyright © 2019 SPIE. |
publishDate |
2019 |
dc.date.issued.none.fl_str_mv |
2019 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:33:10Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:33:10Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_c94f |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
dc.type.hasversion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Conferencia |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
Proceedings of SPIE - The International Society for Optical Engineering; Vol. 10991 |
dc.identifier.isbn.none.fl_str_mv |
9781510626478 |
dc.identifier.issn.none.fl_str_mv |
0277786X |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/9187 |
dc.identifier.doi.none.fl_str_mv |
10.1117/12.2519034 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
24329839300 36142156300 57192270016 57117284600 57203321995 6507678324 7004348301 |
identifier_str_mv |
Proceedings of SPIE - The International Society for Optical Engineering; Vol. 10991 9781510626478 0277786X 10.1117/12.2519034 Universidad Tecnológica de Bolívar Repositorio UTB 24329839300 36142156300 57192270016 57117284600 57203321995 6507678324 7004348301 |
url |
https://hdl.handle.net/20.500.12585/9187 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.conferencedate.none.fl_str_mv |
16 April 2019 through 17 April 2019 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_16ec |
eu_rights_str_mv |
restrictedAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
SPIE |
publisher.none.fl_str_mv |
SPIE |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85072573302&doi=10.1117%2f12.2519034&partnerID=40&md5=ebbb2b54fcb04273ed475acc1703531c Scopus2-s2.0-85072573302 |
institution |
Universidad Tecnológica de Bolívar |
dc.source.event.none.fl_str_mv |
Dimensional Optical Metrology and Inspection for Practical Applications VIII 2019 |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/9187/1/MiniProdInv.png |
bitstream.checksum.fl_str_mv |
0cb0f101a8d16897fb46fc914d3d7043 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021658558595072 |
spelling |
Harding K.G.Zhang, SongMarrugo A.G.Romero L.A.Pineda J.Vargas R.Altamar Mercado, HernandoMarrugo J.Meneses J.2020-03-26T16:33:10Z2020-03-26T16:33:10Z2019Proceedings of SPIE - The International Society for Optical Engineering; Vol. 1099197815106264780277786Xhttps://hdl.handle.net/20.500.12585/918710.1117/12.2519034Universidad Tecnológica de BolívarRepositorio UTB243298393003614215630057192270016571172846005720332199565076783247004348301The skin prick test (SPT) is the standard method for the diagnosis of allergies. It consists in placing an array of allergen drops on the skin of a patient, typically the volar forearm, and pricking them with a lancet to provoke a specific dermal reaction described as a wheal. The diagnosis is performed by measuring the diameter of the skin wheals, although wheals are not usually circular which leads to measurement inconsistencies. Moreover, the conventional approach is to measure their size with a ruler. This method has been proven prone to inter- and intra-observer variations. We have developed a 3D imaging system for the 3D reconstruction of the SPT. Here, we describe the proposed method for the automatic measurements of the wheals based on 3D data processing to yield reliable results. The method is based on a robust parametric fitting to the 3D data for obtaining the diameter directly. We evaluate the repeatability of the system under 3D reconstructions for different object poses. Although the system provides higher accuracy in the measurement, we compare the results to those produced by a physician. Copyright © 2019 SPIE.Universidad Tecnológica de Pereira, UTP: C2018P018, C2018P005 Departamento Administrativo de Ciencia, Tecnología e Innovación (COLCIENCIAS), COLCIENCIAS 538871552485The Society of Photo-Optical Instrumentation Engineers (SPIE)This work has been partly funded by Colciencias (Fondo Nacional de Financiamiento para la Ciencia, la Tec-nología y la Innovación Francisco Joséde Caldas) project 538871552485, and by Universidad Tecnológica de Bolívar projects C2018P005 and C2018P018. J. Pineda and R. Vargas thank Universidad Tecnológica de Bolívar for a post-graduate scholarship. H. Altamar-Mercado thanks Colciencias doctoral support program 785-2017.Recurso electrónicoapplication/pdfengSPIEhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85072573302&doi=10.1117%2f12.2519034&partnerID=40&md5=ebbb2b54fcb04273ed475acc1703531cScopus2-s2.0-85072573302Dimensional Optical Metrology and Inspection for Practical Applications VIII 2019Toward an automatic 3D measurement of skin wheals from skin prick testsinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94f3D medical imaging3D skin measurementAllergy diagnosisFourier transform profilometryFringe projectionSkin prick testSkin whealsAllergiesData handlingDiagnosisImaging systemsMedical imagingProfilometry3D data processingAutomatic measurementsConventional approachDiagnosis of allergiesFourier transform profilometryFringe projectionObserver variationsSkin prick testImage reconstruction16 April 2019 through 17 April 2019Buyuktiryaki, B., Sahiner, U.M., Karabulut, E., Cavkaytar, O., Tuncer, A., Sekerel, B.E., Optimizing the use of a skin prick test device on children (2013) International Archives of Allergy and Immunology, 162 (1), pp. 65-70Venter, C., Arshad, S.H., Epidemiology of food allergy (2011) Pediatric Clinics of North America, 58 (2), pp. 327-349Marrugo, J., Hernández, L., Villalba, V., Prevalence of self-reported food allergy in cartagena (Colombia) population (2008) Allergologia et Immunopathologia, 36 (6), pp. 320-324Tang, M.L.K., Mullins, R.J., Food allergy: Is prevalence increasing? (2017) Internal Medicine Journal, 47 (3), pp. 256-261Andersen, H.H., Lundgaard, A.C., Petersen, A.S., Hauberg, L.E., Sharma, N., Hansen, S.D., Elberling, J., Arendt-Nielsen, L., The lancet weight determines wheal diameter in response to skin prick testing with histamine (2016) PLoS ONE, 11 (5)Konstantinou, G.N., Bousquet, P.-J., Zuberbier, T., Papadopoulos, N.G., The longest wheal diameter Is the optimal measurement for the evaluation of skin prick tests (2010) International Archives of Allergy and Immunology, 151 (4), pp. 343-345Wöhrl, S., Vigl, K., Binder, M., Stingl, G., Prinz, M., Automated measurement of skin prick tests: An advance towards exact calculation of wheal size (2006) Experimental Dermatology, 15 (2), pp. 119-124McCann, W.A., Ownby, D.R., The reproducibility of the allergy skin test scoring and interpretation by board-certified/board-eligible allergists (2002) Annals of Allergy, Asthma and Immunology, 89, pp. 368-371. , OctBulan, O., Improved wheal detection from skin prick test images (2014) IS&T/SPIE Electronic Imaging, p. 90240. , Niel, K. S. and Bingham, P. R., eds., SPIEJusto, X., Díaz, I., Gil, J.J., Gastaminza, G., Prick test: Evolution towards automated reading (2016) Allergy, 71 (8), pp. 1095-1102Dos Santos, R.V., Mlynek, A., Lima, H.C., Martus, P., Maurer, M., Beyond at weals: Validation of a three-dimensional imaging technology that will improve skin allergy research (2008) Clinical and Experimental Dermatology, 33 (6), pp. 772-775Justo, X., Díaz, I., Gil, J.J., Gastaminza, G., Medical device for automated prick test reading (2018) IEEE Journal of Biomedical and Health Informatics, 22 (3), pp. 895-903Takeda, M., Ina, H., Kobayashi, S., Fourier-transform method of fringe-pattern analysis for computerbased topography and interferometry (1982) JosA, 72 (1), pp. 156-160Cai, Z., Liu, X., Li, A., Tang, Q., Peng, X., Gao, B.Z., Phase-3d mapping method developed from back-projection stereovision model for fringe projection profilometry (2017) Optics Express, 25 (2), pp. 1262-1277Vargas, R., Marrugo, A.G., Pineda, J., Meneses, J., Romero, L.A., Camera-projector calibration methods with compensation of geometric distortions in fringe projection profilometry: A comparative study (2018) Opt. Pura Apl., 51 (3), pp. 1-10Pritt, M.D., Ghiglia, D.C., (1998) Two-dimensional Phase Unwrapping: Theory, Algorithms, and Software, , Wiley(2016) Matlab 9.0 and Computer Vision System Toolbox 7.1, , http://www.mathworks.com/products/computer-vision.htmlJolliffe, I.T., Cadima, J., Principal component analysis: A review and recent developments (2016) Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374 (2065), p. 20150202Quellec, G., Lamard, M., Josselin, P.M., Cazuguel, G., Cochener, B., Roux, C., Optimal wavelet transform for the detection of microaneurysms in retina photographs (2008) IEEE Transactions on Medical Imaging, 27 (9), pp. 1230-1241Burt, P., Adelson, E., The laplacian pyramid as a compact image code (1983) IEEE Transactions on Communications, 31 (4), pp. 532-540Paris, S., Hasinoff, S.W., Kautz, J., Local laplacian filters: Edge-aware image processing with a laplacian pyramid (2011) ACM Trans. Graph., 30 (4), pp. 68-71Shao, L., Zhen, X., Tao, D., Li, X., Spatio-temporal laplacian pyramid coding for action recognition (2014) IEEE Transactions on Cybernetics, 44 (6), pp. 817-827http://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9187/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9187oai:repositorio.utb.edu.co:20.500.12585/91872023-05-25 10:16:40.588Repositorio Institucional UTBrepositorioutb@utb.edu.co |