A Generic Materials and Operations Planning Approach for Inventory Turnover Optimization in the Chemical Industry

Chemical industries usually involve continuous and large-scale production processes that require demanding inventory control systems. This paper aims to show the results of the implementation of a mixed-integer programming model (MIP) based on the Generic Materials and Operations Planning Problem (G...

Full description

Autores:
Coronado Hernández, Jairo Rafael
Romero-Conrado, Alfonso R.
Ochoa-González, Olmedo
Quintero-Arango, Humberto
Vargas, Ximena
Gatica, Gustavo
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/9515
Acceso en línea:
https://hdl.handle.net/20.500.12585/9515
https://link.springer.com/chapter/10.1007/978-3-030-47679-3_12
Palabra clave:
Inventory turnover
Production planning
GMOP
Fertilizers
Chemical industry
Optimization
Rights
closedAccess
License
http://purl.org/coar/access_right/c_14cb
id UTB2_b62acda28d64f27eb865a5a86cc06da9
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/9515
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv A Generic Materials and Operations Planning Approach for Inventory Turnover Optimization in the Chemical Industry
title A Generic Materials and Operations Planning Approach for Inventory Turnover Optimization in the Chemical Industry
spellingShingle A Generic Materials and Operations Planning Approach for Inventory Turnover Optimization in the Chemical Industry
Inventory turnover
Production planning
GMOP
Fertilizers
Chemical industry
Optimization
title_short A Generic Materials and Operations Planning Approach for Inventory Turnover Optimization in the Chemical Industry
title_full A Generic Materials and Operations Planning Approach for Inventory Turnover Optimization in the Chemical Industry
title_fullStr A Generic Materials and Operations Planning Approach for Inventory Turnover Optimization in the Chemical Industry
title_full_unstemmed A Generic Materials and Operations Planning Approach for Inventory Turnover Optimization in the Chemical Industry
title_sort A Generic Materials and Operations Planning Approach for Inventory Turnover Optimization in the Chemical Industry
dc.creator.fl_str_mv Coronado Hernández, Jairo Rafael
Romero-Conrado, Alfonso R.
Ochoa-González, Olmedo
Quintero-Arango, Humberto
Vargas, Ximena
Gatica, Gustavo
dc.contributor.author.none.fl_str_mv Coronado Hernández, Jairo Rafael
Romero-Conrado, Alfonso R.
Ochoa-González, Olmedo
Quintero-Arango, Humberto
Vargas, Ximena
Gatica, Gustavo
dc.subject.keywords.spa.fl_str_mv Inventory turnover
Production planning
GMOP
Fertilizers
Chemical industry
Optimization
topic Inventory turnover
Production planning
GMOP
Fertilizers
Chemical industry
Optimization
description Chemical industries usually involve continuous and large-scale production processes that require demanding inventory control systems. This paper aims to show the results of the implementation of a mixed-integer programming model (MIP) based on the Generic Materials and Operations Planning Problem (GMOP) for optimizing the inventory turnover in a fertilizer company. Results showed significant improvements for Inventory Turnover Ratios and overall costs when compared with an empirical production planning method.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-10-30T16:14:10Z
dc.date.available.none.fl_str_mv 2020-10-30T16:14:10Z
dc.date.issued.none.fl_str_mv 2020-05-22
dc.date.submitted.none.fl_str_mv 2020-10-29
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_8544
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/lecture
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.spa.fl_str_mv Otro
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Coronado-Hernández J.R., Romero-Conrado A.R., Ochoa-González O., Quintero-Arango H., Vargas X., Gatica G. (2020) A Generic Materials and Operations Planning Approach for Inventory Turnover Optimization in the Chemical Industry. In: Saeed K., Dvorský J. (eds) Computer Information Systems and Industrial Management. CISIM 2020. Lecture Notes in Computer Science, vol 12133. Springer, Cham. https://doi.org/10.1007/978-3-030-47679-3_12
dc.identifier.isbn.none.fl_str_mv 978-3-030-47678-6
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/9515
dc.identifier.url.none.fl_str_mv https://link.springer.com/chapter/10.1007/978-3-030-47679-3_12
dc.identifier.doi.none.fl_str_mv 10.1007/978-3-030-47679-3_12
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Coronado-Hernández J.R., Romero-Conrado A.R., Ochoa-González O., Quintero-Arango H., Vargas X., Gatica G. (2020) A Generic Materials and Operations Planning Approach for Inventory Turnover Optimization in the Chemical Industry. In: Saeed K., Dvorský J. (eds) Computer Information Systems and Industrial Management. CISIM 2020. Lecture Notes in Computer Science, vol 12133. Springer, Cham. https://doi.org/10.1007/978-3-030-47679-3_12
978-3-030-47678-6
10.1007/978-3-030-47679-3_12
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/9515
https://link.springer.com/chapter/10.1007/978-3-030-47679-3_12
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_14cb
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/closedAccess
eu_rights_str_mv closedAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_14cb
dc.format.extent.none.fl_str_mv 11 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv Lecture Notes in Computer Science, vol 12133.
Computer Information Systems and Industrial Management - 19th International Conference, CISIM 2020, Proceedings. 134.145
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/9515/1/52.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/9515/2/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/9515/3/52.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/9515/4/52.pdf.jpg
bitstream.checksum.fl_str_mv 0d5b98874a4bb966fa677fe9ad67ec50
e20ad307a1c5f3f25af9304a7a7c86b6
ce17bbb4d4f1cbe9a2413e4ea88bb0b2
02c856ac98939e8cad63cf65a9d2174f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021608464973824
spelling Coronado Hernández, Jairo Rafael86b71d5d-cfcc-464b-9792-545bb0afd5a5Romero-Conrado, Alfonso R.1d138280-5541-46fa-9c48-b8127f2bda56Ochoa-González, Olmedodde0e6dc-ad6e-4d72-81f1-be470171d56aQuintero-Arango, Humberto9154b54b-e64a-4135-8ced-633f840c5766Vargas, Ximena119d63f5-8e49-441b-b75d-019805bd8bbdGatica, Gustavofe6fa1c9-2c41-4f0b-9b8c-8dbc65eb42a02020-10-30T16:14:10Z2020-10-30T16:14:10Z2020-05-222020-10-29Coronado-Hernández J.R., Romero-Conrado A.R., Ochoa-González O., Quintero-Arango H., Vargas X., Gatica G. (2020) A Generic Materials and Operations Planning Approach for Inventory Turnover Optimization in the Chemical Industry. In: Saeed K., Dvorský J. (eds) Computer Information Systems and Industrial Management. CISIM 2020. Lecture Notes in Computer Science, vol 12133. Springer, Cham. https://doi.org/10.1007/978-3-030-47679-3_12978-3-030-47678-6https://hdl.handle.net/20.500.12585/9515https://link.springer.com/chapter/10.1007/978-3-030-47679-3_1210.1007/978-3-030-47679-3_12Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarChemical industries usually involve continuous and large-scale production processes that require demanding inventory control systems. This paper aims to show the results of the implementation of a mixed-integer programming model (MIP) based on the Generic Materials and Operations Planning Problem (GMOP) for optimizing the inventory turnover in a fertilizer company. Results showed significant improvements for Inventory Turnover Ratios and overall costs when compared with an empirical production planning method.11 páginasapplication/pdfengLecture Notes in Computer Science, vol 12133.Computer Information Systems and Industrial Management - 19th International Conference, CISIM 2020, Proceedings. 134.145A Generic Materials and Operations Planning Approach for Inventory Turnover Optimization in the Chemical Industryinfo:eu-repo/semantics/lectureinfo:eu-repo/semantics/publishedVersionOtrohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_8544Inventory turnoverProduction planningGMOPFertilizersChemical industryOptimizationinfo:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbCartagena de IndiasInvestigadoresCalcium Nitrate - an overview|ScienceDirect Topics. https://www.sciencedirect.com/topics/chemistry/calcium-nitrateNPK Fertilizers - an overview|ScienceDirect Topics. https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/npk-fertilizersAllman, A., Palys, M.J., Daoutidis, P.: Scheduling-informed optimal design of systems with time-varying operation: a wind-powered ammonia case study. AIChE J. 65(7) (2019). https://doi.org/10.1002/aic.16434Amaran, S., et al.: Long-term turnaround planning for integrated chemical sites. Comput. Chem. Eng. 72, 145–158 (2015). https://doi.org/10.1016/j.compchemeng.2014.08.003Burawat, P.: Guidelines for improving productivity, inventory, turnover rate, and level of defects in manufacturing industry. Int. J. Econ. Perspect. 10(4), 88–95 (2016)Castillo, P.C., Castro, P.M., Mahalec, V.: Multiperiod inventory pinch algorithm for integrated planning and scheduling of oil refineries. In: Computing and Systems Technology Division 2016 - Core Programming Area at the 2016 AIChE Annual Meeting, pp. 402–404 (2016)Cunha, A.L., Santos, M.O.: Mathematical modelling and solution approaches for production planning in a chemical industry. Pesquisa Operacional 37(2), 311–331 (2017). https://doi.org/10.1590/0101-7438.2017.037.02.0311Dziurzanski, P., Zhao, S., Swan, J., Indrusiak, L.S., Scholze, S., Krone, K.: Solving the multi-objective flexible job-shop scheduling problem with alternative recipes for a chemical production process. In: Kaufmann, P., Castillo, P.A. (eds.) EvoApplications 2019. LNCS, vol. 11454, pp. 33–48. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16692-2_3Garcia-Sabater, J.P., Maheut, J., Marin-Garcia, J.A.: A new formulation technique to model materials and operations planning: the generic materials and operations planning (GMOP) problem. Eur. J. Ind. Eng. 7(2), 119–147 (2013). https://doi.org/10.1504/EJIE.2013.052572Kwak, J.K.: Analysis of inventory turnover as a performance measure in manufacturing industry. Processes 7(10) (2019).Li, D., Zhang, X.: How time horizons and arbitrage cost influence the turnover premium? Appl. Econ. 51(44), 4833–4848 (2019). https://doi.org/10.1080/00036846.2019.1602713Maheut, J., Garcia-Sabater, J.P.: Algorithm for complete enumeration based on a stroke graph to solve the supply network configuration and operations scheduling problem. J. Ind. Eng. Manage. 6(3 SPL.ISS), 779–795 (2013). https://doi.org/10.3926/jiem.550Maheut, J., Garcia-Sabater, J.P., Mula, J.: The generic materials and operations planning (GMOP) problem solved iteratively: a case study in multi-site context. In: Frick, J., Laugen, B.T. (eds.) APMS 2011. IAICT, vol. 384, pp. 66–73. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33980-6_8Maheut, J., Garcia-Sabater, J.P.: A parallelizable heuristic for solving the generic materials and operations planning in a supply chain network: a case study from the automotive industry. IFIP Adv. Inf. Commun. Technol. 397, 151–157 (2013). https://doi.org/10.1007/978-3-642-40352-1_20Mostafaei, H., Harjunkoski, I.: Continuous-time scheduling formulation for multipurpose batch plants. AIChE J. 66(2) (2020). https://doi.org/10.1002/aic.16804Nugroho, Y.K., Zhu, L.: An integration of algal biofuel production planning, scheduling, and order-based inventory distribution control systems. Biofuels, Bioprod. Biorefin. 13(4), 920–935 (2019). https://doi.org/10.1002/bbb.1982Odongo, I., Nag, B.: Achieving quality by rapid inventory turnover in the supply chain. Int. J. Prod. Qual. Manage. 19(2), 209–241 (2016). https://doi.org/10.1504/IJPQM.2016.078888Otashu, J.I., Baldea, M.: Scheduling chemical processes for frequency regulation. Appl. Energy 260 (2020). https://doi.org/10.1016/j.apenergy.2019.114125Pacheco Velásquez, E.A.: Un modelo para la optimización de políticas de inventario conjuntas en cadenas de suministro. INGE CUC 9(1), 11–23 (2013). http://revistascientificas.cuc.edu.co/index.php/ingecuc/article/view/105Reetz, H.F.: Fertilizantes e seu Uso Eficiente, vol. 2 (2016). www.anda.org.brRomero-Conrado, A.R., Coronado-Hernandez, J.R., Rius-Sorolla, G., García-Sabater, J.P.: A Tabu list-based algorithm for capacitated multilevel IoT-sizing with alternate bills of materials and co-production environments. Appl. Sci. (Switz.) 9(7), 1464 (2019). https://doi.org/10.3390/app9071464Sabah, B., Nikolay, T., Sylverin, K.T.: Production planning under demand uncertainty using Monte Carlo simulation approach: a case study in fertilizer industry. In: Proceedings of the 2019 International Conference on Industrial Engineering and Systems Management, IESM 2019, pp. 1–6. Institute of Electrical and Electronics Engineers (IEEE), January 2019). https://doi.org/10.1109/IESM45758.2019.8948112Talay, I., Özdemir-Akyıldırım, Ö.: Optimal procurement and production planning for multi-product multi-stage production under yield uncertainty. Eur. J. Oper. Res. 275(2), 536–551 (2019). https://doi.org/10.1016/j.ejor.2018.11.069Wiemer, P.: Production planning and scheduling in chemical and pharmaceutical industry. In: European Control Conference, ECC 1999 - Conference Proceedings, pp. 4836–4841 (2015). https://doi.org/10.23919/ecc.1999.7100102Yang, L.: Design of production management system in ERP of coal chemical industry. Chem. Eng. Trans. 65, 475–480 (2018). https://doi.org/10.3303/CET1865080Zheng, H.: Chemical enterprise production management system based on ERP. Chem. Eng. Trans. 62, 763–768 (2017). https://doi.org/10.3303/CET1762128http://purl.org/coar/resource_type/c_c94fORIGINAL52.pdf52.pdfapplication/pdf71073https://repositorio.utb.edu.co/bitstream/20.500.12585/9515/1/52.pdf0d5b98874a4bb966fa677fe9ad67ec50MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/9515/2/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD52TEXT52.pdf.txt52.pdf.txtExtracted texttext/plain4https://repositorio.utb.edu.co/bitstream/20.500.12585/9515/3/52.pdf.txtce17bbb4d4f1cbe9a2413e4ea88bb0b2MD53THUMBNAIL52.pdf.jpg52.pdf.jpgGenerated Thumbnailimage/jpeg46420https://repositorio.utb.edu.co/bitstream/20.500.12585/9515/4/52.pdf.jpg02c856ac98939e8cad63cf65a9d2174fMD5420.500.12585/9515oai:repositorio.utb.edu.co:20.500.12585/95152023-05-25 16:14:43.999Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=