Three-dimensional simulation of transient flows during the emptying of pipes with entrapped air

Two-and three-dimensional analyses of transient flows considering the air-water interaction have been a challenge for researchers due to the complexity in the numerical resolution of the multiphase during emptying in pressurized water pipelines. The air-water dynamic interaction of emptying processe...

Full description

Autores:
Paternina-Verona, Duban A
Coronado-Hernández, Oscar E
Aguirre-Mendoza, Andres M.
Espinoza-Román, Héctor G
Fuertes-Miquel, Vicente S
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12272
Acceso en línea:
https://hdl.handle.net/20.500.12585/12272
Palabra clave:
Air pocket
Computational fluid dynamics (CFD)
Emptying process
Pressure pulses
Three-dimensional model
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_b5da6bb936df7b8b72c49f1ca500739d
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12272
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Three-dimensional simulation of transient flows during the emptying of pipes with entrapped air
title Three-dimensional simulation of transient flows during the emptying of pipes with entrapped air
spellingShingle Three-dimensional simulation of transient flows during the emptying of pipes with entrapped air
Air pocket
Computational fluid dynamics (CFD)
Emptying process
Pressure pulses
Three-dimensional model
title_short Three-dimensional simulation of transient flows during the emptying of pipes with entrapped air
title_full Three-dimensional simulation of transient flows during the emptying of pipes with entrapped air
title_fullStr Three-dimensional simulation of transient flows during the emptying of pipes with entrapped air
title_full_unstemmed Three-dimensional simulation of transient flows during the emptying of pipes with entrapped air
title_sort Three-dimensional simulation of transient flows during the emptying of pipes with entrapped air
dc.creator.fl_str_mv Paternina-Verona, Duban A
Coronado-Hernández, Oscar E
Aguirre-Mendoza, Andres M.
Espinoza-Román, Héctor G
Fuertes-Miquel, Vicente S
dc.contributor.author.none.fl_str_mv Paternina-Verona, Duban A
Coronado-Hernández, Oscar E
Aguirre-Mendoza, Andres M.
Espinoza-Román, Héctor G
Fuertes-Miquel, Vicente S
dc.subject.keywords.spa.fl_str_mv Air pocket
Computational fluid dynamics (CFD)
Emptying process
Pressure pulses
Three-dimensional model
topic Air pocket
Computational fluid dynamics (CFD)
Emptying process
Pressure pulses
Three-dimensional model
description Two-and three-dimensional analyses of transient flows considering the air-water interaction have been a challenge for researchers due to the complexity in the numerical resolution of the multiphase during emptying in pressurized water pipelines. The air-water dynamic interaction of emptying processes can be analyzed using thermodynamic and hydraulic laws. There is a lack in the current literature regarding the analysis of those phenomena using 3D models. In this research, several simulations were performed to study the complex details of two-phase flows. A 3D model was proposed to represent the emptying process in a single pipeline, considering a PVoF model and two-equation turbulence model. The model was numerically validated through 12 experimental tests and mesh sensitivity analysis. The pressure pulses of the air pockets were evaluated and compared with the experimental results and existing mathematical models, showing how the 3D models are useful for capturing more detailed information, such as pressure and velocity patterns of discrete air pockets, distribution of air and water velocity contours, and the exploration of temperature changes for an air pocket expansion.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-07-21T15:39:49Z
dc.date.available.none.fl_str_mv 2023-07-21T15:39:49Z
dc.date.issued.none.fl_str_mv 2023-04-01
dc.date.submitted.none.fl_str_mv 2023-07
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
status_str draft
dc.identifier.citation.spa.fl_str_mv Paternina-Verona, D.A., Coronado-Hernández, O.E., Aguirre-Mendoza, A.M. , Espinoza-Román, H.G., Fuertes-Miquel, V.S. Three-Dimensional Simulation of Transient Flows during the Emptying of Pipes with Entrapped Air (2023) Journal of Hydraulic Engineering, 149 (4), art. no. 04023007. DOI: 10.1061/JHEND8.HYENG-13302
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12272
dc.identifier.doi.none.fl_str_mv 10.1061/JHEND8.HYENG-13302
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Paternina-Verona, D.A., Coronado-Hernández, O.E., Aguirre-Mendoza, A.M. , Espinoza-Román, H.G., Fuertes-Miquel, V.S. Three-Dimensional Simulation of Transient Flows during the Emptying of Pipes with Entrapped Air (2023) Journal of Hydraulic Engineering, 149 (4), art. no. 04023007. DOI: 10.1061/JHEND8.HYENG-13302
10.1061/JHEND8.HYENG-13302
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12272
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.medium.none.fl_str_mv Pdf
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.publisher.sede.spa.fl_str_mv Campus Tecnológico
dc.source.spa.fl_str_mv Journal of Hydraulic Engineering - Vol. 149 No. 4 (2023)
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12272/1/Three-dimensional%20simulation%20of%20transient%20flows%20during%20the%20emptying%20of%20pipes%20with%20entrapped%20air.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12272/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12272/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12272/4/Three-dimensional%20simulation%20of%20transient%20flows%20during%20the%20emptying%20of%20pipes%20with%20entrapped%20air.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12272/5/Three-dimensional%20simulation%20of%20transient%20flows%20during%20the%20emptying%20of%20pipes%20with%20entrapped%20air.pdf.jpg
bitstream.checksum.fl_str_mv 404c3c366ff37a9558d26f3c10d4e84b
4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
0ed8d1156ee4f7d47d31c745c0ab8e9b
7c13f3a73ccb2e23f90ced9a17594f4d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1808397601324662784
spelling Paternina-Verona, Duban A5d7644af-e173-4934-a456-2d7a35e68c77Coronado-Hernández, Oscar Ec3eeb30c-3946-406c-9961-fd362b8841f5Aguirre-Mendoza, Andres M.ee4e4f53-b7a3-4a09-83fe-3ed87b43c9baEspinoza-Román, Héctor Gde01a4a0-303c-4f6b-a41b-65dda1905d78Fuertes-Miquel, Vicente Sf682be4f-81f2-4a2c-b84a-347dbfe6756f2023-07-21T15:39:49Z2023-07-21T15:39:49Z2023-04-012023-07Paternina-Verona, D.A., Coronado-Hernández, O.E., Aguirre-Mendoza, A.M. , Espinoza-Román, H.G., Fuertes-Miquel, V.S. Three-Dimensional Simulation of Transient Flows during the Emptying of Pipes with Entrapped Air (2023) Journal of Hydraulic Engineering, 149 (4), art. no. 04023007. DOI: 10.1061/JHEND8.HYENG-13302https://hdl.handle.net/20.500.12585/1227210.1061/JHEND8.HYENG-13302Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarTwo-and three-dimensional analyses of transient flows considering the air-water interaction have been a challenge for researchers due to the complexity in the numerical resolution of the multiphase during emptying in pressurized water pipelines. The air-water dynamic interaction of emptying processes can be analyzed using thermodynamic and hydraulic laws. There is a lack in the current literature regarding the analysis of those phenomena using 3D models. In this research, several simulations were performed to study the complex details of two-phase flows. A 3D model was proposed to represent the emptying process in a single pipeline, considering a PVoF model and two-equation turbulence model. The model was numerically validated through 12 experimental tests and mesh sensitivity analysis. The pressure pulses of the air pockets were evaluated and compared with the experimental results and existing mathematical models, showing how the 3D models are useful for capturing more detailed information, such as pressure and velocity patterns of discrete air pockets, distribution of air and water velocity contours, and the exploration of temperature changes for an air pocket expansion.Pdfapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Journal of Hydraulic Engineering - Vol. 149 No. 4 (2023)Three-dimensional simulation of transient flows during the emptying of pipes with entrapped airinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Air pocketComputational fluid dynamics (CFD)Emptying processPressure pulsesThree-dimensional modelCartagena de IndiasCampus TecnológicoAguirre-Mendoza, A.M., Oyuela, S., Espinoza-Román, H.G., Coronado-Hernández, O.E., Fuertes-Miquel, V.S., Paternina-Verona, D.A. 2D CFD modeling of rapid water filling with air valves using openFOAM (2021) Water (Switzerland), 13 (21), art. no. 3104. Cited 7 times. https://www.mdpi.com/2073-4441/13/21/3104/pdf doi: 10.3390/w13213104Aguirre-Mendoza, A.M., Paternina-Verona, D.A., Oyuela, S., Coronado-Hernández, O.E., Besharat, M., Fuertes-Miquel, V.S., Iglesias-Rey, P.L., (...), Ramos, H.M. Effects of Orifice Sizes for Uncontrolled Filling Processes in Water Pipelines (Open Access) (2022) Water (Switzerland), 14 (6), art. no. 888. Cited 6 times. https://www.mdpi.com/2073-4441/14/6/888/pdf doi: 10.3390/w14060888(2016) Air Release, Air/Vacuum Valves and Combination Air Valves (M51). Cited 4 times. AWWA (American Water Works Association). Denver: AWWA.Baines, W.D. Air cavities as gravity currents on slope (1991) Journal of Hydraulic Engineering, 117 (12), pp. 1600-1615. Cited 24 times. doi: 10.1061/(ASCE)0733-9429(1991)117:12(1600)(2021) Bentley OpenFlows HAMMER CONNECT Edition Help Bentley. Exton, PA: Bentley.Besharat, M., Coronado-Hernández, O.E., Fuertes-Miquel, V.S., Viseu, M.T., Ramos, H.M. Backflow air and pressure analysis in emptying a pipeline containing an entrapped air pocket (2018) Urban Water Journal, 15 (8), pp. 769-779. Cited 19 times. http://www.tandf.co.uk/journals/titles/1573062X.asp doi: 10.1080/1573062X.2018.1540711Besharat, M., Coronado-Hernández, O.E., Fuertes-Miquel, V.S., Viseu, M.T., Ramos, H.M. Computational fluid dynamics for sub-atmospheric pressure analysis in pipe drainage (2020) Journal of Hydraulic Research, 58 (4), pp. 553-565. Cited 16 times. http://www.tandfonline.com/toc/tjhr20/current doi: 10.1080/00221686.2019.1625819Bombardelli, F.A., Hirt, C.W., Garcia, M.H. Computations of curved free surface water flow on spiral concentratorsa (2001) Journal of Hydraulic Engineering, 127 (7), pp. 627-631. Cited 27 times. doi: 10.1061/(ASCE)0733-9429(2001)127:7(629)Chosie, C.D., Hatcher, T.M., Vasconcelos, J.G. Experimental and Numerical Investigation on the Motion of Discrete Air Pockets in Pressurized Water Flows (2014) Journal of Hydraulic Engineering, 140 (8), art. no. 04014038. Cited 20 times. http://ascelibrary.org/journal/jhend8 doi: 10.1061/(ASCE)HY.1943-7900.0000898Coronado-Hernández, O.E., Fuertes-Miquel, V.S., Besharat, M., Ramos, H.M. Experimental and numerical analysis of a water emptying pipeline using different air valves (2017) Water (Switzerland), 9 (2), art. no. 98. Cited 35 times. http://www.mdpi.com/journal/water doi: 10.3390/w9020098Coronado-Hernández, O.E., Fuertes-Miquel, V.S., Besharat, M., Ramos, H.M. Subatmospheric pressure in a water draining pipeline with an air pocket (2018) Urban Water Journal, 15 (4), pp. 346-352. Cited 21 times. http://www.tandf.co.uk/journals/titles/1573062X.asp doi: 10.1080/1573062X.2018.1475578Coronado-Hernández, O.E., Fuertes-Miquel, V.S., Iglesias-Rey, P.L., Martínez-Solano, F.J. Rigid water column model for simulating the emptying process in a pipeline using pressurized air (2018) Journal of Hydraulic Engineering, 144 (4), art. no. 06018004. Cited 15 times. http://ascelibrary.org/journal/jhend8 doi: 10.1061/(ASCE)HY.1943-7900.0001446Coronado-Hernández, Ó.E. (2019) Transient Phenomena during the Emptying Process of Water in Pressurized Pipelines. Cited 4 times. Ph.D.Thesis, Departamento de Ingeniería Hidráulica y Medio Ambiente, Universitat Politècnica de València.Fang, H., Zhou, L., Cao, Y., Cai, F., Liu, D. 3D CFD simulations of air-water interaction in T-junction pipes of urban stormwater drainage system (2022) Urban Water Journal, 19 (1), pp. 74-86. Cited 3 times. http://www.tandf.co.uk/journals/titles/1573062X.asp doi: 10.1080/1573062X.2021.1955282Fuertes, V. (2001) Hydraulic Transients with Entrapped Air Pockets. Cited 17 times. Ph.D.Thesis, Dept. of Hydraulic Engineering, Polytechnic Univ. of Valencia.Fuertes-Miquel, V.S., Coronado-Hernández, O.E., Iglesias-Rey, P.L., Mora-Meliá, D. Transient phenomena during the emptying process of a single pipe with water–air interaction (2019) Journal of Hydraulic Research, 57 (3), pp. 318-326. Cited 27 times. http://www.tandfonline.com/toc/tjhr20/current doi: 10.1080/00221686.2018.1492465Fuertes-Miquel, V.S., Coronado-Hernández, O.E., Mora-Meliá, D., Iglesias-Rey, P.L. Hydraulic modeling during filling and emptying processes in pressurized pipelines: a literature review (2019) Urban Water Journal, 16 (4), pp. 299-311. Cited 27 times. http://www.tandf.co.uk/journals/titles/1573062X.asp doi: 10.1080/1573062X.2019.1669188Fuertes-Miquel, V.S., López-Jiménez, P.A., Martínez-Solano, F.J., López-Patiño, G. Numerical modelling of pipelines with air pockets and air valves (2016) Canadian Journal of Civil Engineering, 43 (12), pp. 1052-1061. Cited 23 times. http://www.nrcresearchpress.com/loi/cjce doi: 10.1139/cjce-2016-0209Greenshields, C., Weller, H. (2022) Notes on Computational Fluid Dynamics: General Principles. Cited 35 times. Reading, UK: Computational Fluid Dynamics Direct.Hirt, C.W., Nichols, B.D. Volume of fluid (VOF) method for the dynamics of free boundaries (Open Access) (1981) Journal of Computational Physics, 39 (1), pp. 201-225. Cited 12461 times. doi: 10.1016/0021-9991(81)90145-5Hurtado-Misal, A.D., Hernández-Sanjuan, D., Coronado-Hernández, O.E., Espinoza-Román, H., Fuertes-Miquel, V.S. Analysis of sub-atmospheric pressures during emptying of an irregular pipeline without an air valve using a 2d cfd model (2021) Water (Switzerland), 13 (18), art. no. 2526. Cited 8 times. https://www.mdpi.com/2073-4441/13/18/2526/pdf doi: 10.3390/w13182526Issa, R.I. Solution of the implicitly discretised fluid flow equations by operator-splitting (1986) Journal of Computational Physics, 62 (1), pp. 40-65. Cited 4215 times. doi: 10.1016/0021-9991(86)90099-9(2018) Allievi Users Manual ITA (Instituto Tecnológico del Agua). Valencia, Spain: Polytechnic Univ. of Valencia.Jasak, H., Weller, H. (1995) Interface Tracking Capabilities of the Inter-gamma Differencing Scheme. Cited 43 times. London: Imperial College of Science, Technology and Medicine.Laanearu, J., Annus, I., Koppel, T., Bergant, A., Vučković, S., Hou, Q., Tijsseling, A.S., (...), van't Westende, J.M.C. Emptying of large-scale pipeline by pressurized air (2012) Journal of Hydraulic Engineering, 138 (12), pp. 1090-1100. Cited 44 times. doi: 10.1061/(ASCE)HY.1943-7900.0000631Laanearu, J., Hou, Q., Annus, I., Tijsseling, A.S. Water-column mass losses during the emptying of a large-scale pipeline by pressurized air (Open Access) (2015) Proceedings of the Estonian Academy of Sciences, 64 (1), pp. 8-16. Cited 16 times. http://www.eap.ee/public/proceedings_pdf/2015/issue_1/Proc-2015-1-17-21.pdf doi: 10.3176/proc.2015.1.02Launder, B.E., Spalding, D.B. (1983) Numerical Prediction of Flow, Heat Transfer, Turbulence and Combustion, pp. 96-116. Cited 444 times. The numerical computation of turbulent flows." In, Amsterdam, Netherlands: Elsevier.Liou, C.P., Hunt, W.A. Filling of pipelines with undulating elevation profiles (1996) Journal of Hydraulic Engineering, 122 (10), pp. 534-539. Cited 83 times. http://ascelibrary.org/journal/jhend8 doi: 10.1061/(ASCE)0733-9429(1996)122:10(534)Martin, C.S. (1976) Entrapped Air in Pipelines In Proc. 2nd Int. Conf. on Pressure Surges. Bedford, UK: British Hydromechanics Research Association Fluid Engineering.Martins, N.M.C., Delgado, J.N., Ramos, H.M., Covas, D.I.C. Maximum transient pressures in a rapidly filling pipeline with entrapped air using a CFD model (Open Access) (2017) Journal of Hydraulic Research, 55 (4), pp. 506-519. Cited 33 times. http://www.tandfonline.com/toc/tjhr20/current doi: 10.1080/00221686.2016.1275046Menter, F.R. Two-equation eddy-viscosity turbulence models for engineering applications (1994) AIAA Journal, 32 (8), pp. 1598-1605. Cited 15770 times. doi: 10.2514/3.12149Menter, F.R. Review of the shear-stress transport turbulence model experience from an industrial perspective (2009) International Journal of Computational Fluid Dynamics, 23 (4), pp. 305-316. Cited 682 times. doi: 10.1080/10618560902773387Menter, F.R., Esch, T. (2001) Elements of Industrial Heat Transfer Predictions In Proc. 16th Brazilian Congress of Mechanical Engineering (COBEM). Rio de Janeiro, Brazil: Brazilian Society of Mechanical Sciences.Muralha, A., Melo, J.F., Ramos, H.M. Assessment of CFD solvers and turbulent models for water free jets in spillways (Open Access) (2020) Fluids, 5 (3), art. no. 100. Cited 7 times. https://www.mdpi.com/2311-5521/5/3/104 doi: 10.3390/fluids5030104Paternina-Verona, D.A., Coronado-Hernández, O.E., Fuertes-Miquel, V.S. Numerical modelling for analysing drainage in irregular profile pipes using OpenFOAM (Open Access) (2022) Urban Water Journal, 19 (6), pp. 569-578. Cited 3 times. http://www.tandf.co.uk/journals/titles/1573062X.asp doi: 10.1080/1573062X.2022.2050929Pozos, O., Gonzalez, C.A., Giesecke, J., Marx, W., Rodal, E.A. Air entrapped in gravity pipeline systems (Open Access) (2010) Journal of Hydraulic Research, 48 (3), pp. 338-347. Cited 40 times. doi: 10.1080/00221686.2010.481839Romero, G., Fuertes-Miquel, V.S., Coronado-Hernández, Ó.E., Ponz-Carcelén, R., Biel-Sanchis, F. Analysis of hydraulic transients during pipeline filling processes with air valves in large-scale installations (Open Access) (2020) Urban Water Journal, 17 (6), pp. 568-575. Cited 7 times. http://www.tandf.co.uk/journals/titles/1573062X.asp doi: 10.1080/1573062X.2020.1800762Tijsseling, A.S., Hou, Q., Bozkus, Z., Laanearu, J. Improved One-Dimensional Models for Rapid Emptying and Filling of Pipelines (Open Access) (2016) Journal of Pressure Vessel Technology, Transactions of the ASME, 138 (3), art. no. 031301. Cited 35 times. http://asmedl.aip.org/PressureVesselTech doi: 10.1115/1.4031508Vasconcelos, J.G., Chosie, C.D., Leite, G.M. Investigation of air pockets compression and motion in stormwater storage tunnels (Open Access) (2012) World Environmental and Water Resources Congress 2012: Crossing Boundaries, Proceedings of the 2012 Congress, pp. 1458-1468. Cited 5 times. ISBN: 978-078441231-2 doi: 10.1061/9780784412312.146Vasconcelos, J.G., Wright, S.J. Experimental investigation of surges in a stormwater storage tunnel (2005) Journal of Hydraulic Engineering, 131 (10), pp. 853-861. Cited 66 times. doi: 10.1061/(ASCE)0733-9429(2005)131:10(853)Vasconcelos, J.G., Wright, S.J. Investigation of rapid filling of poorly ventilated stormwater storage tunnels (Open Access) (2009) Journal of Hydraulic Research, 47 (5), pp. 547-558. Cited 48 times. doi: 10.3826/jhr.2009.3390Wang, H., Zhai, Z.J. Analyzing grid independency and numerical viscosity of computational fluid dynamics for indoor environment applications (Open Access) (2012) Building and Environment, 52, pp. 107-118. Cited 47 times. doi: 10.1016/j.buildenv.2011.12.019Wilcox, D.C. Reassessment of the scale-determining equation for advanced turbulence models (Open Access) (1988) AIAA Journal, 26 (11), pp. 1299-1310. Cited 2465 times. doi: 10.2514/3.10041Wu, G., Duan, X., Zhu, J., Li, X., Tang, X., Gao, H. Investigations of hydraulic transient flows in pressurized pipeline based on 1D traditional and 3D weakly compressible models (2021) Journal of Hydroinformatics, 23 (2), pp. 231-248. Cited 7 times. https://iwaponline.com/jh/article/23/2/231/80219/Investigations-of-hydraulic-transient-flows-in doi: 10.2166/HYDRO.2021.134Zhou, L., Liu, D.-Y., Ou, C.-Q. Simulation of flow transients in a water filling pipe containing entrapped air pocket with VOF model (2011) Engineering Applications of Computational Fluid Mechanics, 5 (1), pp. 127-140. Cited 79 times. http://jeacfm.cse.polyu.edu.hk/download/download.php?dirname=vol5no1&act=d&f=vol5no1-10_ZhouL.pdf doi: 10.1080/19942060.2011.11015357Zhou, L., Wang, H., Karney, B., Liu, D., Wang, P., Guo, S. Dynamic behavior of entrapped air pocket in a water filling pipeline (Open Access) (2018) Journal of Hydraulic Engineering, 144 (8), art. no. 04018045. Cited 49 times. http://ascelibrary.org/journal/jhend8 doi: 10.1061/(ASCE)HY.1943-7900.0001491Zukoski, E.E. Influence of viscosity, surface tension, and inclination angle on motion of long bubbles in closed tubes (Open Access) (1966) Journal of Fluid Mechanics, 25 (4), pp. 821-837. Cited 323 times. doi: 10.1017/S0022112066000442http://purl.org/coar/resource_type/c_2df8fbb1ORIGINALThree-dimensional simulation of transient flows during the emptying of pipes with entrapped air.pdfThree-dimensional simulation of transient flows during the emptying of pipes with entrapped air.pdfapplication/pdf184794https://repositorio.utb.edu.co/bitstream/20.500.12585/12272/1/Three-dimensional%20simulation%20of%20transient%20flows%20during%20the%20emptying%20of%20pipes%20with%20entrapped%20air.pdf404c3c366ff37a9558d26f3c10d4e84bMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12272/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12272/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTThree-dimensional simulation of transient flows during the emptying of pipes with entrapped air.pdf.txtThree-dimensional simulation of transient flows during the emptying of pipes with entrapped air.pdf.txtExtracted texttext/plain11447https://repositorio.utb.edu.co/bitstream/20.500.12585/12272/4/Three-dimensional%20simulation%20of%20transient%20flows%20during%20the%20emptying%20of%20pipes%20with%20entrapped%20air.pdf.txt0ed8d1156ee4f7d47d31c745c0ab8e9bMD54THUMBNAILThree-dimensional simulation of transient flows during the emptying of pipes with entrapped air.pdf.jpgThree-dimensional simulation of transient flows during the emptying of pipes with entrapped air.pdf.jpgGenerated Thumbnailimage/jpeg8652https://repositorio.utb.edu.co/bitstream/20.500.12585/12272/5/Three-dimensional%20simulation%20of%20transient%20flows%20during%20the%20emptying%20of%20pipes%20with%20entrapped%20air.pdf.jpg7c13f3a73ccb2e23f90ced9a17594f4dMD5520.500.12585/12272oai:repositorio.utb.edu.co:20.500.12585/122722023-07-22 00:17:50.877Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=