Preliminary Characterization of Chromium (VI) Solution Adsorption with Mytella charruana in Semi-Artificial Environments
The bivalve specie Mytella charruana has shown great potential as a bioindicator in natural waters and a biofilter for the adsorption of metals, such as Cr(VI). This species has been found in important densities in Cartagena de Indias Bay, where high concentrations of Cr(VI) have also been reported....
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/9174
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/9174
- Palabra clave:
- Adsorption
Biofilter
Hexavalent chromium
Mytella charruana
Adsorption
Aquatic ecosystems
Barium compounds
Bioactivity
Biofilters
Molluscs
Tanks (containers)
Aquatic environments
Artificial environments
Glass containers
Hexavalent chromium
Initial concentration
Mangrove ecosystems
Mytella charruana
Total dissolved solids
Chromium compounds
Bivalvia
Mytella
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_b5d26965b179d8ea61a0c26bbcc27ca6 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/9174 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
Preliminary Characterization of Chromium (VI) Solution Adsorption with Mytella charruana in Semi-Artificial Environments |
title |
Preliminary Characterization of Chromium (VI) Solution Adsorption with Mytella charruana in Semi-Artificial Environments |
spellingShingle |
Preliminary Characterization of Chromium (VI) Solution Adsorption with Mytella charruana in Semi-Artificial Environments Adsorption Biofilter Hexavalent chromium Mytella charruana Adsorption Aquatic ecosystems Barium compounds Bioactivity Biofilters Molluscs Tanks (containers) Aquatic environments Artificial environments Glass containers Hexavalent chromium Initial concentration Mangrove ecosystems Mytella charruana Total dissolved solids Chromium compounds Bivalvia Mytella |
title_short |
Preliminary Characterization of Chromium (VI) Solution Adsorption with Mytella charruana in Semi-Artificial Environments |
title_full |
Preliminary Characterization of Chromium (VI) Solution Adsorption with Mytella charruana in Semi-Artificial Environments |
title_fullStr |
Preliminary Characterization of Chromium (VI) Solution Adsorption with Mytella charruana in Semi-Artificial Environments |
title_full_unstemmed |
Preliminary Characterization of Chromium (VI) Solution Adsorption with Mytella charruana in Semi-Artificial Environments |
title_sort |
Preliminary Characterization of Chromium (VI) Solution Adsorption with Mytella charruana in Semi-Artificial Environments |
dc.subject.keywords.none.fl_str_mv |
Adsorption Biofilter Hexavalent chromium Mytella charruana Adsorption Aquatic ecosystems Barium compounds Bioactivity Biofilters Molluscs Tanks (containers) Aquatic environments Artificial environments Glass containers Hexavalent chromium Initial concentration Mangrove ecosystems Mytella charruana Total dissolved solids Chromium compounds Bivalvia Mytella |
topic |
Adsorption Biofilter Hexavalent chromium Mytella charruana Adsorption Aquatic ecosystems Barium compounds Bioactivity Biofilters Molluscs Tanks (containers) Aquatic environments Artificial environments Glass containers Hexavalent chromium Initial concentration Mangrove ecosystems Mytella charruana Total dissolved solids Chromium compounds Bivalvia Mytella |
description |
The bivalve specie Mytella charruana has shown great potential as a bioindicator in natural waters and a biofilter for the adsorption of metals, such as Cr(VI). This species has been found in important densities in Cartagena de Indias Bay, where high concentrations of Cr(VI) have also been reported. Thus, the purpose of this paper is to study the potential of the bivalve specie Mytella charruana, grown in Cr(VI) rich media, as a bio-adsorption treatment for Cr(VI) removal in aquatic environments such as mangrove ecosystems. For the experimental setup the bivalves collected from the mangrove roots were distributed into 5 L glass containers filled with unfiltered water from the media, and additional Cr(VI) solutions to reach 20, 30 and 50 μg/L concentrations. The containers, prepared by triplicate and with 3 control tanks, were aerated for 4 days and samples were daily taken to follow the pH, conductivity, total dissolved solids, and Cr(VI) concentration in both water and biomass. The bivalve species demonstrated biological activity through the presence of feces and pseudofeces settled in the tanks, the reduction of Cr(VI) concentration in the water phase, with and efficiency that improved with the initial concentration, and the survivability of the individuals. The bivalves acted as biofilters for the removal of Cr(VI) in the media, and, although they are not accumulating the contaminant in their organisms but eliminating it through their feces and pseudofeces. © 2020, Springer Nature Switzerland AG. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:33:08Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:33:08Z |
dc.date.issued.none.fl_str_mv |
2020 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasVersion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
Water, Air, and Soil Pollution; Vol. 231, Núm. 1 |
dc.identifier.issn.none.fl_str_mv |
00496979 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/9174 |
dc.identifier.doi.none.fl_str_mv |
10.1007/s11270-019-4349-9 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
57212767637 57212764078 57212758538 57194692235 57204560330 14622047600 57194689395 |
identifier_str_mv |
Water, Air, and Soil Pollution; Vol. 231, Núm. 1 00496979 10.1007/s11270-019-4349-9 Universidad Tecnológica de Bolívar Repositorio UTB 57212767637 57212764078 57212758538 57194692235 57204560330 14622047600 57194689395 |
url |
https://hdl.handle.net/20.500.12585/9174 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessRights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_16ec |
eu_rights_str_mv |
restrictedAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85077365733&doi=10.1007%2fs11270-019-4349-9&partnerID=40&md5=11e265a68f2360f6c2ff88498faa9a18 |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/9174/1/MiniProdInv.png |
bitstream.checksum.fl_str_mv |
0cb0f101a8d16897fb46fc914d3d7043 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021712893706240 |
spelling |
2020-03-26T16:33:08Z2020-03-26T16:33:08Z2020Water, Air, and Soil Pollution; Vol. 231, Núm. 100496979https://hdl.handle.net/20.500.12585/917410.1007/s11270-019-4349-9Universidad Tecnológica de BolívarRepositorio UTB57212767637572127640785721275853857194692235572045603301462204760057194689395The bivalve specie Mytella charruana has shown great potential as a bioindicator in natural waters and a biofilter for the adsorption of metals, such as Cr(VI). This species has been found in important densities in Cartagena de Indias Bay, where high concentrations of Cr(VI) have also been reported. Thus, the purpose of this paper is to study the potential of the bivalve specie Mytella charruana, grown in Cr(VI) rich media, as a bio-adsorption treatment for Cr(VI) removal in aquatic environments such as mangrove ecosystems. For the experimental setup the bivalves collected from the mangrove roots were distributed into 5 L glass containers filled with unfiltered water from the media, and additional Cr(VI) solutions to reach 20, 30 and 50 μg/L concentrations. The containers, prepared by triplicate and with 3 control tanks, were aerated for 4 days and samples were daily taken to follow the pH, conductivity, total dissolved solids, and Cr(VI) concentration in both water and biomass. The bivalve species demonstrated biological activity through the presence of feces and pseudofeces settled in the tanks, the reduction of Cr(VI) concentration in the water phase, with and efficiency that improved with the initial concentration, and the survivability of the individuals. The bivalves acted as biofilters for the removal of Cr(VI) in the media, and, although they are not accumulating the contaminant in their organisms but eliminating it through their feces and pseudofeces. © 2020, Springer Nature Switzerland AG.Universidad Tecnológica de Pereira, UTP: 318The authors would like to thank the support given by Fundación Universitaria Tecnológico Comfenalco – Cartagena (Colombia), the members of the CIPTEC Research Group, Universidad de Cartagena, and Universidad Tecnológica de Bolívar. This work was funded by the Fundación Universitaria Tecnológico Comfenalco – Cartagena (Resolution #318 from October 28th 2014). Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Recurso electrónicoapplication/pdfengSpringerhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85077365733&doi=10.1007%2fs11270-019-4349-9&partnerID=40&md5=11e265a68f2360f6c2ff88498faa9a18Preliminary Characterization of Chromium (VI) Solution Adsorption with Mytella charruana in Semi-Artificial Environmentsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1AdsorptionBiofilterHexavalent chromiumMytella charruanaAdsorptionAquatic ecosystemsBarium compoundsBioactivityBiofiltersMolluscsTanks (containers)Aquatic environmentsArtificial environmentsGlass containersHexavalent chromiumInitial concentrationMangrove ecosystemsMytella charruanaTotal dissolved solidsChromium compoundsBivalviaMytellaGómez M.Patrón S.Fajardo-Herrera R.Mendoza D.C.Martínez-Pájaro C.Pasqualino J.Lambis-Miranda H.A.(2012) Standard Methods for the Examination of Water and Wastewater, 22. , APHA American Public Health Association, USAArcaría, N., García, A., Darrigran, G., El mejillón charrúa (Mytella charruana) (in Spanish) (2012) Boletín Biológica, 24 (6), pp. 26-27. , http://www.revistaboletinbiologica.com.ar/pdfs/biologica24completo.pdfAstorga-Rodríguez, J.E., Martínez-Rodríguez, I.E., García-de la Parra, L.M., Betancourt-Lozano, M., Vanegas-Pérez, R.C., Ponce de León-Hill, C.A., Ruelas-Inzunza, J., Lead and cadmium levels in mussels and fishes from three coastal ecosystems of NW Mexico and its potential risk due to fish and seafood consumption (2018) Toxicology and Environmental Health Sciences, 10 (3), pp. 203-211Baumard, P., Budzinski, H., Garrigues, P., Sorbe, J.C., Burgeot, T., Bellocq, J., Concentrations of PHAs (polycyclic aromatic hydrocarbons) in various marine organisms in relation to those in sediments and to trophic level (1998) Marine Pollution Bulletin, 36, pp. 951-960Box, J.F., Guinness, Gosset, fisher, and small samples (1987) Statistical Science, 2 (1), pp. 45-52Cascaret-Carmenaty, D., Calzado-Lamela, O., Pérez-Silva, C.R., Determinación de la capacidad de adsorción de Cromo (VI) por biomasa bacteriana (in Spanish) (2014) Revista Cubana de Química, 26 (3), pp. 215-224. , http://scielo.sld.cu/pdf/ind/v26n3/ind05314.pdfChávez, A., Descripción de la Nocividad del Cromo Proveniente de la Industria Curtiembre y de las Posibles Formas de Removerlo (in Spanish) (2010) Revista Ingenierías Universidad de Medellín, 9 (17), pp. 41-50. , https://revistas.udem.edu.co/index.php/ingenierias/article/view/6Chitraprabha, K., Sathyavathi, S., Phytoextraction of chromium from electroplating effluent by Tagetes erecta (L.) (2018) Sustainable Environment Research, 28, pp. 128-134Concha-Castro, C., García-Portacio, T., Mendoza, D., Martínez-Pajaro, C., Fajardo-Herrera, R., Lambis-Miranda, H., Spatial analysis about structural patterns of fate of chromium (VI) in relation to pH at natural seawater bodies (2017) Chemical Engineering Transactions, 57, pp. 391-396. , https://doi.org/10.3303/CET1757066Derrick, B., Toher, D., White, P., How to compare the means of two samples that include paired observations and independent observations: A companion to Derrick, Russ, Toher and White (2017) The Quantitative Methods in Psychology, 3 (2), pp. 120-126Dornelles, L.P., Deodato de Souza, M.F., da Silva, P.M., Procópio, T.F., Salas Roldan, F.R., de Albuquerque Lima, T., Silva de Oliveira, A.P., Napoleão, T.H., Purification and characterization of a protease from the visceral mass of Mytella charruana and its evaluation to obtain antimicrobial peptides (2018) Food Chemistry, 245, pp. 1169-1185Eggs, N., Salvarezza, S., Azario, R., Fernández, N., García, M.D.C., Adsorción de cromo hexavalente en la cáscara de arroz modificada químicamente (in Spanish) (2012) Avances en Ciencias e Ingeniería, 3 (3), pp. 141-151. , https://www.redalyc.org/html/3236/323627687014/, COI: 1:CAS:528:DC%2BC3sXitV2lsQ%3D%3DFerrari, B.J.D., Vignati, D.A.L., Roulier, J.L., Coquery, M., Szalinska, E., Bobrowskif, A., Czaplicka, A., Dominika, J., Chromium bioavailability in aquatic systems impacted by tannery wastewaters. Part 2: New insights from laboratory and in situ testing with Chironomus riparius Meigen (Diptera, Chironomidae) (2019) Science of the Total Environment, 653, pp. 1-9Foroughbakhch, R., Céspedes, A., Alvarado-Vázquez, M., Núñez, A., Badii, M., (2004) Aspectos ecológicos De Los Manglares Y Su Potencial Como Fitorremediadores En El Golfo De México, 7, pp. 203-208. , in Spanish, Ciencia UANLGalimany, E., Lunt, J., Domingos, A., Paul, V.J., Feeding behavior of the native mussel Ischadium recurvum and the invasive mussels Mytella charruana and Perna viridis in FL, USA, across a salinity gradient (2018) Estuaries and Coasts, 41 (8), pp. 2378-2388Goyal, N., Jain, S.C., Banerjee, U.C., Comparative studies on the microbial adsorption of heavy metals (2003) Advances in Environmental Research, 7, pp. 311-319Hammer, O., Harper, D.A.T., Ryan, P.D., PAST: Paleontological statistics software package for education and data analysis (2001) Palaeontologia Electronica, 4 (1), pp. 1-9. , https://palaeo-electronica.org/2001_1/past/past.pdf, Retrived fromHenriques, B., Teixeira, A., Figueira, P., Reis, A.T., Almeida, J., Vale, C., Pereira, E., Simultaneous removal of trace elements from contaminated waters by living Ulva lactuca (2019) Science of the Total Environment, 652, pp. 880-888Higino, P.A.S., Jesus, T.B., Carvalho, C.E.V., Tonial, L.S.S., Calado, T.C.S., Seasonal variation of Total mercury in mussels (Mytella charruana, Orbigny, 1842) from a tropical lagoon, NE, Brazil (2012) Revista Virtual de Química, 4 (4), pp. 393-404. , http://rvq.sbq.org.br/imagebank/pdf/v4n4a05.pdf, COI: 1:CAS:528:DC%2BC3sXhslaqsA%3D%3DKan, C.C., Ibe, A.H., Rivera, K.K., Arazo, R.O., de Luna, M.D., Hexavalent chromium removal from aqueous solution by adsorbents synthesized from groundwater treatment residuals (2017) Sustainable Environment Research, 27, pp. 163-171Liu, W., Yang, L., Xu, S., Chen, Y., Liu, B., Li, Z., Jiang, C., Efficient removal of hexavalent chromium from water by an adsorption–reduction mechanism with sandwiched nanocomposites (2018) RSC Advances, 8, pp. 15087-15093. , https://doi.org/10.1039/c8ra01805gMaioli, O.L.G., Rodrigues, K.C., Knoppers, B.A., Azevedo, D.A., Polycyclic aromatic and aliphatic hydrocarbons in Mytella charruana, a bivalve mollusk from Mundaú lagoon, Brazil (2010) Microchemical Journal, 96, pp. 172-179Mediodia, D.P., de Leon, S.M.S., Anasco, N.C., Baylon, C.C., Shell morphology and anatomy of the Philippine Charru mussel Mytella charruana (D’orbigny 1842) (2017) Asian Fisheries Science, 30 (3), pp. 185-194Montgomery, D.C., Runger, G.C., Hubele, N.F., (2009) Engineering Statistics, , John Wiley & SonsMystrioti, C., Toli, A., Papasiopi, N., Dermatas, D., Thimi, S., Chromium removal with environmentally friendly Iron nanoparticles in a pilot scale study (2018) Bulletin of Environmental Contamination and Toxicology, 101, pp. 705-710Nemecek, J., Lhotsky, O., Cajthaml, T., Nanoscale zero-valent iron application for in situ reduction of hexavalent chromium and its effects on indigenous microorganism populations (2014) Science of the Total Environment, 485, pp. 739-747O'Neill, M.E., Mathews, K.L., Levene tests of homogeneity of variance for general block and treatment designs (2002) Biometrics, 58 (1), pp. 216-224Pérez, A., Fajardo, M.A., Strobl, A., Pérez, L., Piñeiro, A., López, C., Content of lead, chromium and cadmium in edible mussels of the Gulf san Jorge (Argentina) (2005) Acta Toxicológica Argentina, 13 (1), pp. 20-25. , http://www.ingenieroambiental.com/4014/sanjorge.pdfPusceddu, F.H., Choueri, R.B., Pereira, C.D.S., Cortez, F.S., Santos, D.R.A., Moreno, B.B., Santos, A.R., Cesar, A., Environmental risk assessment of triclosan and ibuprofen in marine sediments using individual and sub-individual endpoints (2018) Environmental Pollution, 232, pp. 274-283Puyana, M., Prato, J., Díaz, J.M., Mytella charruana (d'Orbigny) (Mollusca: Bivalvia: Mytilidae) in Cartagena Bay, Colombia (in Spanish) (2012) Boletín de Investigaciones Marinas y Costeras, 41 (1), pp. 213-217. , http://boletin.invemar.org.co/index.php/boletin/article/view/80/77Rahmawati, A., Marwoto, P., Karunia, A., Papaya seeds as a low-cost sorbent for removing Cr(VI) from the aqueous solution (2016) Journal of Physics: Conference Series, 739, pp. 012-017. , https://doi.org/10.1088/1742-6596/739/1/012017Razali, N.M., Wah, Y.B., Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests (2011) Journal of Statistical Modeling and Analytics, 2, pp. 21-33Rice, M.A., Rawson, P.D., Salinas, A.D., Rosario, W.R., Identification and salinity tolerance of the Western hemisphere mussel Mytella charruana (D'Orbigny, 1842) in the Philippines (2016) Journal of Shellfish Research, 35 (4), pp. 865-874Rojas-Romero, J.E., Rincón-Ramírez, J.E., Marín-Leal, J.C., Ortega-Fuenmayor, P.C., Buonocore-Tovar, R., Colina, M., Brinolfo-Montilla, J., Toxicidad y bioacumulación de Cromo (Cr+6) en la almeja Polymesoda solida del sistema estuarino Lago de Maracaibo (in Spanish) (2015) Boletín del Centro de Investigaciones Biológicas, 49 (1), pp. 5-25. , http://produccioncientificaluz.org/index.php/boletin/article/download/20876/20749Shapiro, S.S., Wilk, M.B., An analysis of variance test for normality (complete samples) (1965) Biometrika, 52 (3-4), pp. 591-611. , https://doi.org/10.1093/biomet/52.3-4.591Singh, R., Misra, V., Singh, R.P., Removal of Cr(VI) by nanoscale zero-valent iron (nZVI) from soil contaminated with tannery wastes (2012) Bulletin of Environmental Contamination and Toxicology, 88, pp. 210-214Tapia, J., Freer, J., Mansilla, H., Villaseñor, J., Bruhn, C., Basualto, S., Estudio de Reducción Fotocatalizada de Cromo Hexavalente (in Spanish) (2002) Boletín de la Sociedad Chilena de Química, 47 (4), pp. 469-476Valdelamar, J., Pasqualino, J., Herrera, D., Potential application of Mytella charruana in wastewater treatment (2018) Boletín Científico Del CIOH, (36), pp. 41-52. , https://doi.org/10.26640/22159045.437, application of M. charruana in wastewater treatmentVignati, D.A.L., Ferrari, B.J.D., Roulier, J.L., Coquery, M., Szalinska, E., Bobrowski, A., Czaplicka, A., Dominika, J., Chromium bioavailability in aquatic systems impacted by tannery wastewaters. Part 1: Understanding chromium accumulation by indigenous chironomids (2019) Science of the Total Environment, 653, pp. 401-408Villalobos, D.B., Mendoza, D.C., Martínez-Pájaro, C., Fajardo-Herrera, R., Lambis-Miranda, H.A., Spatial perspective of hexavalent chromium concentration in superficial waters of the Ciénaga de las Quintas mangrove swamp, Cartagena de Indias, Colombia (2018) Lakes & Reservoirs, 2018, pp. 1-10. , https://doi.org/10.1111/lre.12244Yuan, W.S., Walters, L.J., Brodsky, S.A., Schneider, K.R., Hoffman, E.A., Synergistic effects of salinity and temperature on the survival of two nonnative bivalve Molluscs, Perna viridis (Linnaeus 1758) and Mytella charruana (d’Orbigny 1846) (2016) Journal of Marine Biology, 2016, pp. 1-14Zou, H., Hu, E., Yang, S., Gong, L., He, F., Chromium (VI) removal by mechanochemically sulfidated zero valent iron and its effect on dechlorination of trichloroethene as a co-contaminant (2019) Science of the Total Environment, 650 (1), pp. 419-426http://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9174/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9174oai:repositorio.utb.edu.co:20.500.12585/91742021-02-02 15:29:05.346Repositorio Institucional UTBrepositorioutb@utb.edu.co |