Rigid water column model for simulating the emptying process in a pipeline using pressurized air
This paper presents a mathematical model for analyzing the emptying process in a pipeline using pressurized air. The rigid water column model (RWCM) is used to analyze the transient phenomena that occur during the emptying of the pipeline. The air-water interface is also computed in the proposed mod...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2018
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/8886
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/8886
- Palabra clave:
- Air-water interface
Pipelines emptying
Pressurized air
Transient flow
Water distribution system
Air
Flow of water
Gages
Hydraulics
Phase interfaces
Pipelines
Polyvinyl chlorides
Transition flow
Water distribution systems
Water supply systems
Air water interfaces
Computer modeling programs
High pressure air
Internal diameters
Pressurized air
Transient flow
Transient phenomenon
Water column models
Rivers
Air-water interaction
Boundary condition
Computer simulation
Flow field
Hydraulics
Interface
Numerical model
Pipe flow
Pipeline
Pressure field
Transient flow
Water column
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_b58944fe3c1a293122d248bad73943c6 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/8886 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
Rigid water column model for simulating the emptying process in a pipeline using pressurized air |
title |
Rigid water column model for simulating the emptying process in a pipeline using pressurized air |
spellingShingle |
Rigid water column model for simulating the emptying process in a pipeline using pressurized air Air-water interface Pipelines emptying Pressurized air Transient flow Water distribution system Air Flow of water Gages Hydraulics Phase interfaces Pipelines Polyvinyl chlorides Transition flow Water distribution systems Water supply systems Air water interfaces Computer modeling programs High pressure air Internal diameters Pressurized air Transient flow Transient phenomenon Water column models Rivers Air-water interaction Boundary condition Computer simulation Flow field Hydraulics Interface Numerical model Pipe flow Pipeline Pressure field Transient flow Water column |
title_short |
Rigid water column model for simulating the emptying process in a pipeline using pressurized air |
title_full |
Rigid water column model for simulating the emptying process in a pipeline using pressurized air |
title_fullStr |
Rigid water column model for simulating the emptying process in a pipeline using pressurized air |
title_full_unstemmed |
Rigid water column model for simulating the emptying process in a pipeline using pressurized air |
title_sort |
Rigid water column model for simulating the emptying process in a pipeline using pressurized air |
dc.subject.keywords.none.fl_str_mv |
Air-water interface Pipelines emptying Pressurized air Transient flow Water distribution system Air Flow of water Gages Hydraulics Phase interfaces Pipelines Polyvinyl chlorides Transition flow Water distribution systems Water supply systems Air water interfaces Computer modeling programs High pressure air Internal diameters Pressurized air Transient flow Transient phenomenon Water column models Rivers Air-water interaction Boundary condition Computer simulation Flow field Hydraulics Interface Numerical model Pipe flow Pipeline Pressure field Transient flow Water column |
topic |
Air-water interface Pipelines emptying Pressurized air Transient flow Water distribution system Air Flow of water Gages Hydraulics Phase interfaces Pipelines Polyvinyl chlorides Transition flow Water distribution systems Water supply systems Air water interfaces Computer modeling programs High pressure air Internal diameters Pressurized air Transient flow Transient phenomenon Water column models Rivers Air-water interaction Boundary condition Computer simulation Flow field Hydraulics Interface Numerical model Pipe flow Pipeline Pressure field Transient flow Water column |
description |
This paper presents a mathematical model for analyzing the emptying process in a pipeline using pressurized air. The rigid water column model (RWCM) is used to analyze the transient phenomena that occur during the emptying of the pipeline. The air-water interface is also computed in the proposed model. The proposed model is applied along a 271.6-m-long PVC-steel pipeline with a 232-mm internal diameter. The boundary conditions are given by a high-pressure air tank at the upstream end and a manual butterfly valve at the downstream end. The solution was carried out in a computer modeling program. The results show that comparisons between both the computed and measured water flow oscillations and gauge pressures are very similar; hence, the model can effectively simulate the transient flow in this system. In addition, the results indicate that the proposed model can predict both the water flow and gauge pressure better than previous models. © 2018 American Society of Civil Engineers. |
publishDate |
2018 |
dc.date.issued.none.fl_str_mv |
2018 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:32:33Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:32:33Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasversion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
Journal of Hydraulic Engineering; Vol. 144, Núm. 4 |
dc.identifier.issn.none.fl_str_mv |
07339429 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/8886 |
dc.identifier.doi.none.fl_str_mv |
10.1061/(ASCE)HY.1943-7900.0001446 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
57193337460 56074282700 15220062200 15220688300 |
identifier_str_mv |
Journal of Hydraulic Engineering; Vol. 144, Núm. 4 07339429 10.1061/(ASCE)HY.1943-7900.0001446 Universidad Tecnológica de Bolívar Repositorio UTB 57193337460 56074282700 15220062200 15220688300 |
url |
https://hdl.handle.net/20.500.12585/8886 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_16ec |
eu_rights_str_mv |
restrictedAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
American Society of Civil Engineers (ASCE) |
publisher.none.fl_str_mv |
American Society of Civil Engineers (ASCE) |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85041448605&doi=10.1061%2f%28ASCE%29HY.1943-7900.0001446&partnerID=40&md5=46e64b7aa6e2641126ad79016ddf298e |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/8886/1/MiniProdInv.png |
bitstream.checksum.fl_str_mv |
0cb0f101a8d16897fb46fc914d3d7043 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021736123858944 |
spelling |
2020-03-26T16:32:33Z2020-03-26T16:32:33Z2018Journal of Hydraulic Engineering; Vol. 144, Núm. 407339429https://hdl.handle.net/20.500.12585/888610.1061/(ASCE)HY.1943-7900.0001446Universidad Tecnológica de BolívarRepositorio UTB57193337460560742827001522006220015220688300This paper presents a mathematical model for analyzing the emptying process in a pipeline using pressurized air. The rigid water column model (RWCM) is used to analyze the transient phenomena that occur during the emptying of the pipeline. The air-water interface is also computed in the proposed model. The proposed model is applied along a 271.6-m-long PVC-steel pipeline with a 232-mm internal diameter. The boundary conditions are given by a high-pressure air tank at the upstream end and a manual butterfly valve at the downstream end. The solution was carried out in a computer modeling program. The results show that comparisons between both the computed and measured water flow oscillations and gauge pressures are very similar; hence, the model can effectively simulate the transient flow in this system. In addition, the results indicate that the proposed model can predict both the water flow and gauge pressure better than previous models. © 2018 American Society of Civil Engineers.Recurso electrónicoapplication/pdfengAmerican Society of Civil Engineers (ASCE)http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85041448605&doi=10.1061%2f%28ASCE%29HY.1943-7900.0001446&partnerID=40&md5=46e64b7aa6e2641126ad79016ddf298eRigid water column model for simulating the emptying process in a pipeline using pressurized airinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Air-water interfacePipelines emptyingPressurized airTransient flowWater distribution systemAirFlow of waterGagesHydraulicsPhase interfacesPipelinesPolyvinyl chloridesTransition flowWater distribution systemsWater supply systemsAir water interfacesComputer modeling programsHigh pressure airInternal diametersPressurized airTransient flowTransient phenomenonWater column modelsRiversAir-water interactionBoundary conditionComputer simulationFlow fieldHydraulicsInterfaceNumerical modelPipe flowPipelinePressure fieldTransient flowWater columnCoronado Hernández, Óscar EnriqueFuertes Miquel, Vicente S.Iglesias-Rey P.L.Martínez-Solano F.J.Cabrera, E., Abreu, J., Pérez, R., Vela, A., Influence of liquid length variation in hydraulic transients (1992) J. Hydraul. Res., pp. 1639-1650Fuertes, V.S., Hydraulic transients with entrapped air pockets (2001) Ph. D. thesis, , Polytechnic Univ. of Valencia, València, SpainHou, Q., Experimental study of filling and emptying of a large-scale pipeline (2012), CASA-Rep., Technische Universiteit Eindhoven, Eindhoven, NetherlandsIzquierdo, J., Fuertes, V., Cabrera, E., Iglesias, P., Garcia-Serra, J., Pipeline start-up with entrapped air (1999) J. Hydraul. Res., 37 (5), pp. 579-590Karadžić, U., Strunjaš, F., Bergant, A., Mavric, R., Buckstein, S., Developments in pipeline filling and emptying experimentation in a laboratory pipeline apparatus (2015), pp. 273-280. , Proc., 6th IAHR Meeting on WG Cavitation and Dynamic Problems (Ljubljana) (Novo Mesto), International Association for Hydraulic Research, Ljubljana, SloveniaKoppel, T., Laanearu, J., Annus, I., Raidmaa, M., Using transient flow equations for modelling of filling and emptying of large-scale pipeline (2010) 12th Annual Conf. on Water Distribution Systems Analysis (WDSA), pp. 112-121. , ASCE, Reston, VALaanearu, J., Emptying of large-scale pipeline by pressurized air (2012) J. Hydraul. Eng., pp. 1090-1100Laanearu, J., Hou, Q., Annus, I., Tijsseling, A.S., Watercolumn mass losses during the emptying of a large-scale pipeline by pressurized air (2015) Proc. Est. Acad. Sci., 64 (1), p. 8Laanearu, J., Van't Westende, J., Hydraulic characteristics of test rig used in filling and emptying experiments of large-scalePVCpipeline (2010) Proc., HYDRALAB III Joint User Meeting, Forschungszentrum Küste FZK (Coastal Research Centre FZK), , Univ. of Hannover, Hannover, GermanyLiou, C., Hunt, W., Filling of pipelines with undulating elevation profiles (1996) J. Hydraul. Eng., 122 (10), pp. 534-539. , 534Computer software, , MathWorks, Naticks, MAPothof, I., Clemens, F., On elongated air pockets in downward sloping pipes (2010) J. Hydraul. Res., 48 (4), pp. 499-503Tijsseling, A., Hou, Q., Bozkus, Z., Laanearu, J., Improved one-dimensional models for rapid emptying and filling of pipelines (2016) J. Pressure Vessel Technol., 138 (3)Zhou, L., Liu, D., Karney, B., Investigation of hydraulic transients of two entrapped air pockets in a water pipeline (2013) J. Hydraul. Eng., pp. 949-959Zhou, L., Liu, D., Karney, B., Phenomenon of white mist in pipelines rapidly filling with water with entrapped air pocket (2013) J. Hydraul. Eng., pp. 1041-1051Zhou, L., Liu, D., Ou, C., Simulation of flow transients in a water filling pipe containing entrapped air pocket with VOF model (2011) Eng. Appl. Comput. Fluid Mech., 5 (1), pp. 127-140http://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/8886/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/8886oai:repositorio.utb.edu.co:20.500.12585/88862023-05-26 09:44:25.423Repositorio Institucional UTBrepositorioutb@utb.edu.co |