Rigid water column model for simulating the emptying process in a pipeline using pressurized air

This paper presents a mathematical model for analyzing the emptying process in a pipeline using pressurized air. The rigid water column model (RWCM) is used to analyze the transient phenomena that occur during the emptying of the pipeline. The air-water interface is also computed in the proposed mod...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2018
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/8886
Acceso en línea:
https://hdl.handle.net/20.500.12585/8886
Palabra clave:
Air-water interface
Pipelines emptying
Pressurized air
Transient flow
Water distribution system
Air
Flow of water
Gages
Hydraulics
Phase interfaces
Pipelines
Polyvinyl chlorides
Transition flow
Water distribution systems
Water supply systems
Air water interfaces
Computer modeling programs
High pressure air
Internal diameters
Pressurized air
Transient flow
Transient phenomenon
Water column models
Rivers
Air-water interaction
Boundary condition
Computer simulation
Flow field
Hydraulics
Interface
Numerical model
Pipe flow
Pipeline
Pressure field
Transient flow
Water column
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_b58944fe3c1a293122d248bad73943c6
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/8886
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Rigid water column model for simulating the emptying process in a pipeline using pressurized air
title Rigid water column model for simulating the emptying process in a pipeline using pressurized air
spellingShingle Rigid water column model for simulating the emptying process in a pipeline using pressurized air
Air-water interface
Pipelines emptying
Pressurized air
Transient flow
Water distribution system
Air
Flow of water
Gages
Hydraulics
Phase interfaces
Pipelines
Polyvinyl chlorides
Transition flow
Water distribution systems
Water supply systems
Air water interfaces
Computer modeling programs
High pressure air
Internal diameters
Pressurized air
Transient flow
Transient phenomenon
Water column models
Rivers
Air-water interaction
Boundary condition
Computer simulation
Flow field
Hydraulics
Interface
Numerical model
Pipe flow
Pipeline
Pressure field
Transient flow
Water column
title_short Rigid water column model for simulating the emptying process in a pipeline using pressurized air
title_full Rigid water column model for simulating the emptying process in a pipeline using pressurized air
title_fullStr Rigid water column model for simulating the emptying process in a pipeline using pressurized air
title_full_unstemmed Rigid water column model for simulating the emptying process in a pipeline using pressurized air
title_sort Rigid water column model for simulating the emptying process in a pipeline using pressurized air
dc.subject.keywords.none.fl_str_mv Air-water interface
Pipelines emptying
Pressurized air
Transient flow
Water distribution system
Air
Flow of water
Gages
Hydraulics
Phase interfaces
Pipelines
Polyvinyl chlorides
Transition flow
Water distribution systems
Water supply systems
Air water interfaces
Computer modeling programs
High pressure air
Internal diameters
Pressurized air
Transient flow
Transient phenomenon
Water column models
Rivers
Air-water interaction
Boundary condition
Computer simulation
Flow field
Hydraulics
Interface
Numerical model
Pipe flow
Pipeline
Pressure field
Transient flow
Water column
topic Air-water interface
Pipelines emptying
Pressurized air
Transient flow
Water distribution system
Air
Flow of water
Gages
Hydraulics
Phase interfaces
Pipelines
Polyvinyl chlorides
Transition flow
Water distribution systems
Water supply systems
Air water interfaces
Computer modeling programs
High pressure air
Internal diameters
Pressurized air
Transient flow
Transient phenomenon
Water column models
Rivers
Air-water interaction
Boundary condition
Computer simulation
Flow field
Hydraulics
Interface
Numerical model
Pipe flow
Pipeline
Pressure field
Transient flow
Water column
description This paper presents a mathematical model for analyzing the emptying process in a pipeline using pressurized air. The rigid water column model (RWCM) is used to analyze the transient phenomena that occur during the emptying of the pipeline. The air-water interface is also computed in the proposed model. The proposed model is applied along a 271.6-m-long PVC-steel pipeline with a 232-mm internal diameter. The boundary conditions are given by a high-pressure air tank at the upstream end and a manual butterfly valve at the downstream end. The solution was carried out in a computer modeling program. The results show that comparisons between both the computed and measured water flow oscillations and gauge pressures are very similar; hence, the model can effectively simulate the transient flow in this system. In addition, the results indicate that the proposed model can predict both the water flow and gauge pressure better than previous models. © 2018 American Society of Civil Engineers.
publishDate 2018
dc.date.issued.none.fl_str_mv 2018
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:32:33Z
dc.date.available.none.fl_str_mv 2020-03-26T16:32:33Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Journal of Hydraulic Engineering; Vol. 144, Núm. 4
dc.identifier.issn.none.fl_str_mv 07339429
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/8886
dc.identifier.doi.none.fl_str_mv 10.1061/(ASCE)HY.1943-7900.0001446
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 57193337460
56074282700
15220062200
15220688300
identifier_str_mv Journal of Hydraulic Engineering; Vol. 144, Núm. 4
07339429
10.1061/(ASCE)HY.1943-7900.0001446
Universidad Tecnológica de Bolívar
Repositorio UTB
57193337460
56074282700
15220062200
15220688300
url https://hdl.handle.net/20.500.12585/8886
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv American Society of Civil Engineers (ASCE)
publisher.none.fl_str_mv American Society of Civil Engineers (ASCE)
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85041448605&doi=10.1061%2f%28ASCE%29HY.1943-7900.0001446&partnerID=40&md5=46e64b7aa6e2641126ad79016ddf298e
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/8886/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021736123858944
spelling 2020-03-26T16:32:33Z2020-03-26T16:32:33Z2018Journal of Hydraulic Engineering; Vol. 144, Núm. 407339429https://hdl.handle.net/20.500.12585/888610.1061/(ASCE)HY.1943-7900.0001446Universidad Tecnológica de BolívarRepositorio UTB57193337460560742827001522006220015220688300This paper presents a mathematical model for analyzing the emptying process in a pipeline using pressurized air. The rigid water column model (RWCM) is used to analyze the transient phenomena that occur during the emptying of the pipeline. The air-water interface is also computed in the proposed model. The proposed model is applied along a 271.6-m-long PVC-steel pipeline with a 232-mm internal diameter. The boundary conditions are given by a high-pressure air tank at the upstream end and a manual butterfly valve at the downstream end. The solution was carried out in a computer modeling program. The results show that comparisons between both the computed and measured water flow oscillations and gauge pressures are very similar; hence, the model can effectively simulate the transient flow in this system. In addition, the results indicate that the proposed model can predict both the water flow and gauge pressure better than previous models. © 2018 American Society of Civil Engineers.Recurso electrónicoapplication/pdfengAmerican Society of Civil Engineers (ASCE)http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85041448605&doi=10.1061%2f%28ASCE%29HY.1943-7900.0001446&partnerID=40&md5=46e64b7aa6e2641126ad79016ddf298eRigid water column model for simulating the emptying process in a pipeline using pressurized airinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Air-water interfacePipelines emptyingPressurized airTransient flowWater distribution systemAirFlow of waterGagesHydraulicsPhase interfacesPipelinesPolyvinyl chloridesTransition flowWater distribution systemsWater supply systemsAir water interfacesComputer modeling programsHigh pressure airInternal diametersPressurized airTransient flowTransient phenomenonWater column modelsRiversAir-water interactionBoundary conditionComputer simulationFlow fieldHydraulicsInterfaceNumerical modelPipe flowPipelinePressure fieldTransient flowWater columnCoronado Hernández, Óscar EnriqueFuertes Miquel, Vicente S.Iglesias-Rey P.L.Martínez-Solano F.J.Cabrera, E., Abreu, J., Pérez, R., Vela, A., Influence of liquid length variation in hydraulic transients (1992) J. Hydraul. Res., pp. 1639-1650Fuertes, V.S., Hydraulic transients with entrapped air pockets (2001) Ph. D. thesis, , Polytechnic Univ. of Valencia, València, SpainHou, Q., Experimental study of filling and emptying of a large-scale pipeline (2012), CASA-Rep., Technische Universiteit Eindhoven, Eindhoven, NetherlandsIzquierdo, J., Fuertes, V., Cabrera, E., Iglesias, P., Garcia-Serra, J., Pipeline start-up with entrapped air (1999) J. Hydraul. Res., 37 (5), pp. 579-590Karadžić, U., Strunjaš, F., Bergant, A., Mavric, R., Buckstein, S., Developments in pipeline filling and emptying experimentation in a laboratory pipeline apparatus (2015), pp. 273-280. , Proc., 6th IAHR Meeting on WG Cavitation and Dynamic Problems (Ljubljana) (Novo Mesto), International Association for Hydraulic Research, Ljubljana, SloveniaKoppel, T., Laanearu, J., Annus, I., Raidmaa, M., Using transient flow equations for modelling of filling and emptying of large-scale pipeline (2010) 12th Annual Conf. on Water Distribution Systems Analysis (WDSA), pp. 112-121. , ASCE, Reston, VALaanearu, J., Emptying of large-scale pipeline by pressurized air (2012) J. Hydraul. Eng., pp. 1090-1100Laanearu, J., Hou, Q., Annus, I., Tijsseling, A.S., Watercolumn mass losses during the emptying of a large-scale pipeline by pressurized air (2015) Proc. Est. Acad. Sci., 64 (1), p. 8Laanearu, J., Van't Westende, J., Hydraulic characteristics of test rig used in filling and emptying experiments of large-scalePVCpipeline (2010) Proc., HYDRALAB III Joint User Meeting, Forschungszentrum Küste FZK (Coastal Research Centre FZK), , Univ. of Hannover, Hannover, GermanyLiou, C., Hunt, W., Filling of pipelines with undulating elevation profiles (1996) J. Hydraul. Eng., 122 (10), pp. 534-539. , 534Computer software, , MathWorks, Naticks, MAPothof, I., Clemens, F., On elongated air pockets in downward sloping pipes (2010) J. Hydraul. Res., 48 (4), pp. 499-503Tijsseling, A., Hou, Q., Bozkus, Z., Laanearu, J., Improved one-dimensional models for rapid emptying and filling of pipelines (2016) J. Pressure Vessel Technol., 138 (3)Zhou, L., Liu, D., Karney, B., Investigation of hydraulic transients of two entrapped air pockets in a water pipeline (2013) J. Hydraul. Eng., pp. 949-959Zhou, L., Liu, D., Karney, B., Phenomenon of white mist in pipelines rapidly filling with water with entrapped air pocket (2013) J. Hydraul. Eng., pp. 1041-1051Zhou, L., Liu, D., Ou, C., Simulation of flow transients in a water filling pipe containing entrapped air pocket with VOF model (2011) Eng. Appl. Comput. Fluid Mech., 5 (1), pp. 127-140http://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/8886/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/8886oai:repositorio.utb.edu.co:20.500.12585/88862023-05-26 09:44:25.423Repositorio Institucional UTBrepositorioutb@utb.edu.co