Efficient Day-Ahead Dispatch of Photovoltaic Sources in Monopolar DC Networks via an Iterative Convex Approximation
The objective of this research is to propose an efficient energy management system for photovoltaic (PV) generation units connected to monopolar DC distribution networks via convex optimization while considering a day-ahead dispatch operation scenario. A convex approximation is used which is based o...
- Autores:
-
Montoya, Oscar Danilo
Grisales-Noreña, Luis Fernando
Hernández, Jesús C.
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/12186
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/12186
- Palabra clave:
- Microgrid;
DC-DC Converter;
Electric Potential
LEMB
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_b5134f2a62ae09a26b69909ee033b843 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/12186 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Efficient Day-Ahead Dispatch of Photovoltaic Sources in Monopolar DC Networks via an Iterative Convex Approximation |
title |
Efficient Day-Ahead Dispatch of Photovoltaic Sources in Monopolar DC Networks via an Iterative Convex Approximation |
spellingShingle |
Efficient Day-Ahead Dispatch of Photovoltaic Sources in Monopolar DC Networks via an Iterative Convex Approximation Microgrid; DC-DC Converter; Electric Potential LEMB |
title_short |
Efficient Day-Ahead Dispatch of Photovoltaic Sources in Monopolar DC Networks via an Iterative Convex Approximation |
title_full |
Efficient Day-Ahead Dispatch of Photovoltaic Sources in Monopolar DC Networks via an Iterative Convex Approximation |
title_fullStr |
Efficient Day-Ahead Dispatch of Photovoltaic Sources in Monopolar DC Networks via an Iterative Convex Approximation |
title_full_unstemmed |
Efficient Day-Ahead Dispatch of Photovoltaic Sources in Monopolar DC Networks via an Iterative Convex Approximation |
title_sort |
Efficient Day-Ahead Dispatch of Photovoltaic Sources in Monopolar DC Networks via an Iterative Convex Approximation |
dc.creator.fl_str_mv |
Montoya, Oscar Danilo Grisales-Noreña, Luis Fernando Hernández, Jesús C. |
dc.contributor.author.none.fl_str_mv |
Montoya, Oscar Danilo Grisales-Noreña, Luis Fernando Hernández, Jesús C. |
dc.subject.keywords.spa.fl_str_mv |
Microgrid; DC-DC Converter; Electric Potential |
topic |
Microgrid; DC-DC Converter; Electric Potential LEMB |
dc.subject.armarc.none.fl_str_mv |
LEMB |
description |
The objective of this research is to propose an efficient energy management system for photovoltaic (PV) generation units connected to monopolar DC distribution networks via convex optimization while considering a day-ahead dispatch operation scenario. A convex approximation is used which is based on linearization via Taylor’s series expansion to the hyperbolic relations between voltages and powers in the demand nodes. A recursive solution methodology is introduced via sequential convex programming to minimize the errors introduced by the linear approximation in the power balance constraints. Numerical results in the DC version of the IEEE 33-bus grid demonstrate the effectiveness of the proposed convex model when compared to different combinatorial optimization methods, with the main advantage that the optimal global solution is found thanks to the convexity of the solution space and the reduction of the error via an iterative solution approach. Different objective functions are analyzed to validate the effectiveness of the proposed iterative convex methodology (ICM), which corresponds to technical (energy losses reduction), economic (energy purchasing and maintenance costs), and environmental (equivalent emissions of CO (Formula presented.) to the atmosphere in conventional sources) factors. The proposed ICM finds reductions of about (Formula presented.) in daily energy losses, (Formula presented.) in energy purchasing and operating costs, and (Formula presented.) in CO (Formula presented.) emissions when compared to the benchmark case in the DC version of the IEEE 33-bus grid. All numerical validations were carried out in the MATLAB programming environment using the SEDUMI and SDPT3 tools for convex programming and our own scripts for metaheuristic methods. © 2023 by the authors. |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-07-19T21:17:35Z |
dc.date.available.none.fl_str_mv |
2023-07-19T21:17:35Z |
dc.date.issued.none.fl_str_mv |
2023 |
dc.date.submitted.none.fl_str_mv |
2023 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasversion.spa.fl_str_mv |
info:eu-repo/semantics/draft |
dc.type.spa.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
status_str |
draft |
dc.identifier.citation.spa.fl_str_mv |
Montoya, O. D., Grisales-Noreña, L. F., & Hernández, J. C. (2023). Efficient Day-Ahead Dispatch of Photovoltaic Sources in Monopolar DC Networks via an Iterative Convex Approximation. Energies, 16(3), 1105. |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/12186 |
dc.identifier.doi.none.fl_str_mv |
10.3390/en16031105 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Universidad Tecnológica de Bolívar |
identifier_str_mv |
Montoya, O. D., Grisales-Noreña, L. F., & Hernández, J. C. (2023). Efficient Day-Ahead Dispatch of Photovoltaic Sources in Monopolar DC Networks via an Iterative Convex Approximation. Energies, 16(3), 1105. 10.3390/en16031105 Universidad Tecnológica de Bolívar Repositorio Universidad Tecnológica de Bolívar |
url |
https://hdl.handle.net/20.500.12585/12186 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.cc.*.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
14 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.place.spa.fl_str_mv |
Cartagena de Indias |
dc.source.spa.fl_str_mv |
Energies |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/12186/1/energies-16-01105-v2%20%281%29.pdf https://repositorio.utb.edu.co/bitstream/20.500.12585/12186/2/license_rdf https://repositorio.utb.edu.co/bitstream/20.500.12585/12186/3/license.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/12186/4/energies-16-01105-v2%20%281%29.pdf.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/12186/5/energies-16-01105-v2%20%281%29.pdf.jpg |
bitstream.checksum.fl_str_mv |
205fa17f1640f322bf7dcdadc5ad5a41 4460e5956bc1d1639be9ae6146a50347 e20ad307a1c5f3f25af9304a7a7c86b6 a40522b4c6e40079aa7a9a3d5d9398ab d3a57db7a2e26ee39897fda3332c3200 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021625554665472 |
spelling |
Montoya, Oscar Danilo8a59ede1-6a4a-4d2e-abdc-d0afb14d4480Grisales-Noreña, Luis Fernando7c27cda4-5fe4-4686-8f72-b0442c58a5d1Hernández, Jesús C.0bddc46e-ce64-47d5-b654-2b2dfc3d87dc2023-07-19T21:17:35Z2023-07-19T21:17:35Z20232023Montoya, O. D., Grisales-Noreña, L. F., & Hernández, J. C. (2023). Efficient Day-Ahead Dispatch of Photovoltaic Sources in Monopolar DC Networks via an Iterative Convex Approximation. Energies, 16(3), 1105.https://hdl.handle.net/20.500.12585/1218610.3390/en16031105Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThe objective of this research is to propose an efficient energy management system for photovoltaic (PV) generation units connected to monopolar DC distribution networks via convex optimization while considering a day-ahead dispatch operation scenario. A convex approximation is used which is based on linearization via Taylor’s series expansion to the hyperbolic relations between voltages and powers in the demand nodes. A recursive solution methodology is introduced via sequential convex programming to minimize the errors introduced by the linear approximation in the power balance constraints. Numerical results in the DC version of the IEEE 33-bus grid demonstrate the effectiveness of the proposed convex model when compared to different combinatorial optimization methods, with the main advantage that the optimal global solution is found thanks to the convexity of the solution space and the reduction of the error via an iterative solution approach. Different objective functions are analyzed to validate the effectiveness of the proposed iterative convex methodology (ICM), which corresponds to technical (energy losses reduction), economic (energy purchasing and maintenance costs), and environmental (equivalent emissions of CO (Formula presented.) to the atmosphere in conventional sources) factors. The proposed ICM finds reductions of about (Formula presented.) in daily energy losses, (Formula presented.) in energy purchasing and operating costs, and (Formula presented.) in CO (Formula presented.) emissions when compared to the benchmark case in the DC version of the IEEE 33-bus grid. All numerical validations were carried out in the MATLAB programming environment using the SEDUMI and SDPT3 tools for convex programming and our own scripts for metaheuristic methods. © 2023 by the authors.14 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2EnergiesEfficient Day-Ahead Dispatch of Photovoltaic Sources in Monopolar DC Networks via an Iterative Convex Approximationinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Microgrid;DC-DC Converter;Electric PotentialLEMBCartagena de IndiasSiraj, K., Khan, H.A. DC distribution for residential power networks—A framework to analyze the impact of voltage levels on energy efficiency (2020) Energy Reports, 6, pp. 944-951. Cited 43 times. http://www.journals.elsevier.com/energy-reports/ doi: 10.1016/j.egyr.2020.04.018Garcés, A., Montoya, O.-D. A Potential Function for the Power Flow in DC Microgrids: An Analysis of the Uniqueness and Existence of the Solution and Convergence of the Algorithms (2019) Journal of Control, Automation and Electrical Systems, 30 (5), pp. 794-801. Cited 16 times. http://rd.springer.com/journal/40313 doi: 10.1007/s40313-019-00489-4Garces, A. Uniqueness of the power flow solutions in low voltage direct current grids (2017) Electric Power Systems Research, 151, pp. 149-153. Cited 92 times. doi: 10.1016/j.epsr.2017.05.031Silani, A., Cucuzzella, M., Scherpen, J.M.A., Yazdanpanah, M.J. Robust output regulation for voltage control in DC networks with time-varying loads (Open Access) (2022) Automatica, 135, art. no. 109997. Cited 6 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/270/description#description doi: 10.1016/j.automatica.2021.109997Sadabadi, M.S., Shafiee, Q., Karimi, A. Plug-and-play robust voltage control of DC microgrids (2018) IEEE Transactions on Smart Grid, 9 (6), art. no. 7983406, pp. 6886-6896. Cited 86 times. doi: 10.1109/TSG.2017.2728319Mai, T.D., Van Den Broeck, G., Driesen, J. Transient analysis of low voltage DC grids with high penetration of DERs (Open Access) (2015) 2015 IEEE 1st International Conference on Direct Current Microgrids, ICDCM 2015, art. no. 7152047, pp. 244a-244e. Cited 2 times. ISBN: 978-147999879-1 doi: 10.1109/ICDCM.2015.7152047Kong, L., Nian, H. Transient Modeling Method for Faulty DC Microgrid Considering Control Effect of DC/AC and DC/DC Converters (Open Access) (2020) IEEE Access, 8, art. no. 9169621, pp. 150759-150772. Cited 18 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639 doi: 10.1109/ACCESS.2020.3017015Jing, G., Zhang, A., Zhang, H. Review on DC Distribution Network Protection Technology with Distributed Power Supply (2019) Proceedings 2018 Chinese Automation Congress, CAC 2018, art. no. 8623659, pp. 3583-3586. Cited 12 times. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8603844 ISBN: 978-172811312-8 doi: 10.1109/CAC.2018.8623659Kumar, M., Singh, S.N., Srivastava, S.C. Design and control of smart DC microgrid for integration of renewable energy sources (2012) IEEE Power and Energy Society General Meeting, art. no. 6345018. Cited 45 times. ISBN: 978-146732727-5 doi: 10.1109/PESGM.2012.6345018Shahid, M.U., Mansoor Khan, M., Hashmi, K., Boudina, R., Khan, A., Yuning, J., Tang, H. Renewable energy source (RES)based islanded DC microgrid with enhanced resilient control (Open Access) (2019) International Journal of Electrical Power and Energy Systems, 113, pp. 461-471. Cited 16 times. doi: 10.1016/j.ijepes.2019.05.069Mansouri, N., Lashab, A., Sera, D., Guerrero, J.M., Cherif, A. Large photovoltaic power plants integration: A review of challenges and solutions (Open Access) (2019) Energies, 12 (19), art. no. 3798. Cited 37 times. https://www.mdpi.com/1996-1073/12/19 doi: 10.3390/en12193798Gil-González, W., Montoya, O.D., Holguín, E., Garces, A., Grisales-Noreña, L.F. Economic dispatch of energy storage systems in dc microgrids employing a semidefinite programming model (2019) Journal of Energy Storage, 21, pp. 1-8. Cited 90 times. http://www.journals.elsevier.com/journal-of-energy-storage/ doi: 10.1016/j.est.2018.10.025Azaioud, H., Claeys, R., Knockaert, J., Vandevelde, L., Desmet, J. A low-voltage dc backbone with aggregated res and bess: Benefits compared to a traditional low-voltage ac system (Open Access) (2021) Energies, 14 (5), art. no. 1420. Cited 13 times. https://www.mdpi.com/1996-1073/14/5/1420/pdf doi: 10.3390/en14051420Grisales-Noreña, L.F., Ocampo-Toro, J.A., Rosales-Muñoz, A.A., Cortes-Caicedo, B., Montoya, O.D. An Energy Management System for PV Sources in Standalone and Connected DC Networks Considering Economic, Technical, and Environmental Indices (2022) Sustainability (Switzerland), 14 (24), art. no. 16429. Cited 6 times. http://www.mdpi.com/journal/sustainability/ doi: 10.3390/su142416429Montoya, O.D., Gil-González, W., Molina-Cabrera, A. Exact minimization of the energy losses and the CO2 emissions in isolated DC distribution networks using PV sources (Open Access) (2021) DYNA (Colombia), 88 (217), pp. 178-184. Cited 7 times. http://www.scielo.org.co/pdf/dyna/v88n217/2346-2183-dyna-88-217-178.pdf doi: 10.15446/dyna.v88n217.93099Barrera, N.A.G., González, D.C.P., Mesa, F., Aristizábal, A.J. Procedure for the practical and economic integration of solar PV energy in the city of Bogotá (2021) Energy Reports, 7, pp. 163-180. Cited 6 times. http://www.journals.elsevier.com/energy-reports/ doi: 10.1016/j.egyr.2021.08.091Simiyu, P., Xin, A., Wang, K., Adwek, G., Salman, S. Multiterminal medium voltage DC distribution network hierarchical control (Open Access) (2020) Electronics (Switzerland), 9 (3), art. no. 506. Cited 15 times. https://www.mdpi.com/2079-9292/9/3/506/pdf doi: 10.3390/electronics9030506Sawant, P.T., Bhattar, C.L. Optimization of PV System Using Particle Swarm Algorithm under Dynamic Weather Conditions (Open Access) (2016) Proceedings - 6th International Advanced Computing Conference, IACC 2016, art. no. 7544836, pp. 208-213. Cited 18 times. ISBN: 978-146738286-1 doi: 10.1109/IACC.2016.47Kumar, S., Kaur, T., Upadhyay, S., Sharma, V., Vatsal, D. Optimal Sizing of Stand Alone Hybrid Renewable Energy System with Load Shifting (Open Access) (2020) Energy Sources, Part A: Recovery, Utilization and Environmental Effects. Cited 25 times. http://www.tandf.co.uk/journals/titles/15567036.asp doi: 10.1080/15567036.2020.1831107Ogunsina, A.A., Petinrin, M.O., Petinrin, O.O., Offornedo, E.N., Petinrin, J.O., Asaolu, G.O. Optimal distributed generation location and sizing for loss minimization and voltage profile optimization using ant colony algorithm (2021) SN Applied Sciences, 3 (2), art. no. 248. Cited 26 times. springer.com/snas doi: 10.1007/s42452-021-04226-yVatambeti, R., Dhal, P.K. Congestion Management based Optimal Sizing of PV System using MultiVerse Optimization Algorithm (Open Access) (2019) 2019 5th International Conference on Advanced Computing and Communication Systems, ICACCS 2019, art. no. 8728387, pp. 1055-1058. Cited 2 times. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8722826 ISBN: 978-153869533-3 doi: 10.1109/ICACCS.2019.8728387Sultana, S., Roy, P.K. Krill herd algorithm for optimal location of distributed generator in radial distribution system (Open Access) (2016) Applied Soft Computing Journal, 40, pp. 391-404. Cited 130 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/621920/description#description doi: 10.1016/j.asoc.2015.11.036Suyarov, A., Hasanov, M., Boliev, A., Nazarov, F. Whale Optimization Algorithm For Intogreting Distributed Generators In Radial Distribution Network (2021) SSRN Electron. J. Cited 2 times.Bakri, M.F.M., Othman, Z., Sulaiman, S.I., Rahman, N.H.A. Sizing Optimization of Whale Optimization Algorithm for Hybrid Stand-Alone Photovoltaic System (Open Access) (2021) Proceeding - 2021 IEEE 17th International Colloquium on Signal Processing and Its Applications, CSPA 2021, art. no. 9377279, pp. 18-23. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9377254 ISBN: 978-073814397-2 doi: 10.1109/CSPA52141.2021.9377279Valencia, A., Hincapie, R.A., Gallego, R.A. Optimal location, selection, and operation of battery energy storage systems and renewable distributed generation in medium–low voltage distribution networks (2021) Journal of Energy Storage, 34, art. no. 102158. Cited 61 times. http://www.journals.elsevier.com/journal-of-energy-storage/ doi: 10.1016/j.est.2020.102158Kazem, H.A., Chaichan, M.T., Al-Waeli, A.H.A., Gholami, A. A systematic review of solar photovoltaic energy systems design modelling, algorithms, and software (2022) Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 44 (3), pp. 6709-6736. Cited 9 times. http://www.tandf.co.uk/journals/titles/15567036.asp doi: 10.1080/15567036.2022.2100517Garces, A. On the convergence of Newton's method in power flow studies for dc microgrids (Open Access) (2018) IEEE Transactions on Power Systems, 33 (5), art. no. 8327530, pp. 5770-5777. Cited 120 times. doi: 10.1109/TPWRS.2018.2820430Li, J., Liu, F., Wang, Z., Low, S.H., Mei, S. Optimal Power Flow in Stand-Alone DC Microgrids (2018) IEEE Transactions on Power Systems, 33 (5), art. no. 8279503, pp. 5496-5506. Cited 113 times. doi: 10.1109/TPWRS.2018.2801280Montoya, O.D., Zishan, F., Giral-Ramírez, D.A. Recursive Convex Model for Optimal Power Flow Solution in Monopolar DC Networks (Open Access) (2022) Mathematics, 10 (19), art. no. 3649. Cited 7 times. http://www.mdpi.com/journal/mathematics doi: 10.3390/math10193649Grant, M., Boyd, S. (2014) CVX: Matlab Software for Disciplined Convex Programming, Version 2.1. Cited 8331 times. Available online http://cvxr.com/cvxGrant, M.C., Boyd, S.P. Graph implementations for nonsmooth convex programs (2008) Lecture Notes in Control and Information Sciences, 371, pp. 95-110. Cited 2049 times. https://www.springer.com/series/642 ISBN: 978-184800154-1 doi: 10.1007/978-1-84800-155-8_7http://purl.org/coar/resource_type/c_6501ORIGINALenergies-16-01105-v2 (1).pdfenergies-16-01105-v2 (1).pdfapplication/pdf385399https://repositorio.utb.edu.co/bitstream/20.500.12585/12186/1/energies-16-01105-v2%20%281%29.pdf205fa17f1640f322bf7dcdadc5ad5a41MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12186/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12186/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTenergies-16-01105-v2 (1).pdf.txtenergies-16-01105-v2 (1).pdf.txtExtracted texttext/plain45658https://repositorio.utb.edu.co/bitstream/20.500.12585/12186/4/energies-16-01105-v2%20%281%29.pdf.txta40522b4c6e40079aa7a9a3d5d9398abMD54THUMBNAILenergies-16-01105-v2 (1).pdf.jpgenergies-16-01105-v2 (1).pdf.jpgGenerated Thumbnailimage/jpeg8144https://repositorio.utb.edu.co/bitstream/20.500.12585/12186/5/energies-16-01105-v2%20%281%29.pdf.jpgd3a57db7a2e26ee39897fda3332c3200MD5520.500.12585/12186oai:repositorio.utb.edu.co:20.500.12585/121862023-07-20 00:17:39.082Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo= |