Efficient Day-Ahead Dispatch of Photovoltaic Sources in Monopolar DC Networks via an Iterative Convex Approximation

The objective of this research is to propose an efficient energy management system for photovoltaic (PV) generation units connected to monopolar DC distribution networks via convex optimization while considering a day-ahead dispatch operation scenario. A convex approximation is used which is based o...

Full description

Autores:
Montoya, Oscar Danilo
Grisales-Noreña, Luis Fernando
Hernández, Jesús C.
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12186
Acceso en línea:
https://hdl.handle.net/20.500.12585/12186
Palabra clave:
Microgrid;
DC-DC Converter;
Electric Potential
LEMB
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_b5134f2a62ae09a26b69909ee033b843
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12186
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Efficient Day-Ahead Dispatch of Photovoltaic Sources in Monopolar DC Networks via an Iterative Convex Approximation
title Efficient Day-Ahead Dispatch of Photovoltaic Sources in Monopolar DC Networks via an Iterative Convex Approximation
spellingShingle Efficient Day-Ahead Dispatch of Photovoltaic Sources in Monopolar DC Networks via an Iterative Convex Approximation
Microgrid;
DC-DC Converter;
Electric Potential
LEMB
title_short Efficient Day-Ahead Dispatch of Photovoltaic Sources in Monopolar DC Networks via an Iterative Convex Approximation
title_full Efficient Day-Ahead Dispatch of Photovoltaic Sources in Monopolar DC Networks via an Iterative Convex Approximation
title_fullStr Efficient Day-Ahead Dispatch of Photovoltaic Sources in Monopolar DC Networks via an Iterative Convex Approximation
title_full_unstemmed Efficient Day-Ahead Dispatch of Photovoltaic Sources in Monopolar DC Networks via an Iterative Convex Approximation
title_sort Efficient Day-Ahead Dispatch of Photovoltaic Sources in Monopolar DC Networks via an Iterative Convex Approximation
dc.creator.fl_str_mv Montoya, Oscar Danilo
Grisales-Noreña, Luis Fernando
Hernández, Jesús C.
dc.contributor.author.none.fl_str_mv Montoya, Oscar Danilo
Grisales-Noreña, Luis Fernando
Hernández, Jesús C.
dc.subject.keywords.spa.fl_str_mv Microgrid;
DC-DC Converter;
Electric Potential
topic Microgrid;
DC-DC Converter;
Electric Potential
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description The objective of this research is to propose an efficient energy management system for photovoltaic (PV) generation units connected to monopolar DC distribution networks via convex optimization while considering a day-ahead dispatch operation scenario. A convex approximation is used which is based on linearization via Taylor’s series expansion to the hyperbolic relations between voltages and powers in the demand nodes. A recursive solution methodology is introduced via sequential convex programming to minimize the errors introduced by the linear approximation in the power balance constraints. Numerical results in the DC version of the IEEE 33-bus grid demonstrate the effectiveness of the proposed convex model when compared to different combinatorial optimization methods, with the main advantage that the optimal global solution is found thanks to the convexity of the solution space and the reduction of the error via an iterative solution approach. Different objective functions are analyzed to validate the effectiveness of the proposed iterative convex methodology (ICM), which corresponds to technical (energy losses reduction), economic (energy purchasing and maintenance costs), and environmental (equivalent emissions of CO (Formula presented.) to the atmosphere in conventional sources) factors. The proposed ICM finds reductions of about (Formula presented.) in daily energy losses, (Formula presented.) in energy purchasing and operating costs, and (Formula presented.) in CO (Formula presented.) emissions when compared to the benchmark case in the DC version of the IEEE 33-bus grid. All numerical validations were carried out in the MATLAB programming environment using the SEDUMI and SDPT3 tools for convex programming and our own scripts for metaheuristic methods. © 2023 by the authors.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-07-19T21:17:35Z
dc.date.available.none.fl_str_mv 2023-07-19T21:17:35Z
dc.date.issued.none.fl_str_mv 2023
dc.date.submitted.none.fl_str_mv 2023
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
status_str draft
dc.identifier.citation.spa.fl_str_mv Montoya, O. D., Grisales-Noreña, L. F., & Hernández, J. C. (2023). Efficient Day-Ahead Dispatch of Photovoltaic Sources in Monopolar DC Networks via an Iterative Convex Approximation. Energies, 16(3), 1105.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12186
dc.identifier.doi.none.fl_str_mv 10.3390/en16031105
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Montoya, O. D., Grisales-Noreña, L. F., & Hernández, J. C. (2023). Efficient Day-Ahead Dispatch of Photovoltaic Sources in Monopolar DC Networks via an Iterative Convex Approximation. Energies, 16(3), 1105.
10.3390/en16031105
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12186
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 14 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv Energies
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12186/1/energies-16-01105-v2%20%281%29.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12186/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12186/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12186/4/energies-16-01105-v2%20%281%29.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12186/5/energies-16-01105-v2%20%281%29.pdf.jpg
bitstream.checksum.fl_str_mv 205fa17f1640f322bf7dcdadc5ad5a41
4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
a40522b4c6e40079aa7a9a3d5d9398ab
d3a57db7a2e26ee39897fda3332c3200
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021625554665472
spelling Montoya, Oscar Danilo8a59ede1-6a4a-4d2e-abdc-d0afb14d4480Grisales-Noreña, Luis Fernando7c27cda4-5fe4-4686-8f72-b0442c58a5d1Hernández, Jesús C.0bddc46e-ce64-47d5-b654-2b2dfc3d87dc2023-07-19T21:17:35Z2023-07-19T21:17:35Z20232023Montoya, O. D., Grisales-Noreña, L. F., & Hernández, J. C. (2023). Efficient Day-Ahead Dispatch of Photovoltaic Sources in Monopolar DC Networks via an Iterative Convex Approximation. Energies, 16(3), 1105.https://hdl.handle.net/20.500.12585/1218610.3390/en16031105Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThe objective of this research is to propose an efficient energy management system for photovoltaic (PV) generation units connected to monopolar DC distribution networks via convex optimization while considering a day-ahead dispatch operation scenario. A convex approximation is used which is based on linearization via Taylor’s series expansion to the hyperbolic relations between voltages and powers in the demand nodes. A recursive solution methodology is introduced via sequential convex programming to minimize the errors introduced by the linear approximation in the power balance constraints. Numerical results in the DC version of the IEEE 33-bus grid demonstrate the effectiveness of the proposed convex model when compared to different combinatorial optimization methods, with the main advantage that the optimal global solution is found thanks to the convexity of the solution space and the reduction of the error via an iterative solution approach. Different objective functions are analyzed to validate the effectiveness of the proposed iterative convex methodology (ICM), which corresponds to technical (energy losses reduction), economic (energy purchasing and maintenance costs), and environmental (equivalent emissions of CO (Formula presented.) to the atmosphere in conventional sources) factors. The proposed ICM finds reductions of about (Formula presented.) in daily energy losses, (Formula presented.) in energy purchasing and operating costs, and (Formula presented.) in CO (Formula presented.) emissions when compared to the benchmark case in the DC version of the IEEE 33-bus grid. All numerical validations were carried out in the MATLAB programming environment using the SEDUMI and SDPT3 tools for convex programming and our own scripts for metaheuristic methods. © 2023 by the authors.14 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2EnergiesEfficient Day-Ahead Dispatch of Photovoltaic Sources in Monopolar DC Networks via an Iterative Convex Approximationinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Microgrid;DC-DC Converter;Electric PotentialLEMBCartagena de IndiasSiraj, K., Khan, H.A. DC distribution for residential power networks—A framework to analyze the impact of voltage levels on energy efficiency (2020) Energy Reports, 6, pp. 944-951. Cited 43 times. http://www.journals.elsevier.com/energy-reports/ doi: 10.1016/j.egyr.2020.04.018Garcés, A., Montoya, O.-D. A Potential Function for the Power Flow in DC Microgrids: An Analysis of the Uniqueness and Existence of the Solution and Convergence of the Algorithms (2019) Journal of Control, Automation and Electrical Systems, 30 (5), pp. 794-801. Cited 16 times. http://rd.springer.com/journal/40313 doi: 10.1007/s40313-019-00489-4Garces, A. Uniqueness of the power flow solutions in low voltage direct current grids (2017) Electric Power Systems Research, 151, pp. 149-153. Cited 92 times. doi: 10.1016/j.epsr.2017.05.031Silani, A., Cucuzzella, M., Scherpen, J.M.A., Yazdanpanah, M.J. Robust output regulation for voltage control in DC networks with time-varying loads (Open Access) (2022) Automatica, 135, art. no. 109997. Cited 6 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/270/description#description doi: 10.1016/j.automatica.2021.109997Sadabadi, M.S., Shafiee, Q., Karimi, A. Plug-and-play robust voltage control of DC microgrids (2018) IEEE Transactions on Smart Grid, 9 (6), art. no. 7983406, pp. 6886-6896. Cited 86 times. doi: 10.1109/TSG.2017.2728319Mai, T.D., Van Den Broeck, G., Driesen, J. Transient analysis of low voltage DC grids with high penetration of DERs (Open Access) (2015) 2015 IEEE 1st International Conference on Direct Current Microgrids, ICDCM 2015, art. no. 7152047, pp. 244a-244e. Cited 2 times. ISBN: 978-147999879-1 doi: 10.1109/ICDCM.2015.7152047Kong, L., Nian, H. Transient Modeling Method for Faulty DC Microgrid Considering Control Effect of DC/AC and DC/DC Converters (Open Access) (2020) IEEE Access, 8, art. no. 9169621, pp. 150759-150772. Cited 18 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639 doi: 10.1109/ACCESS.2020.3017015Jing, G., Zhang, A., Zhang, H. Review on DC Distribution Network Protection Technology with Distributed Power Supply (2019) Proceedings 2018 Chinese Automation Congress, CAC 2018, art. no. 8623659, pp. 3583-3586. Cited 12 times. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8603844 ISBN: 978-172811312-8 doi: 10.1109/CAC.2018.8623659Kumar, M., Singh, S.N., Srivastava, S.C. Design and control of smart DC microgrid for integration of renewable energy sources (2012) IEEE Power and Energy Society General Meeting, art. no. 6345018. Cited 45 times. ISBN: 978-146732727-5 doi: 10.1109/PESGM.2012.6345018Shahid, M.U., Mansoor Khan, M., Hashmi, K., Boudina, R., Khan, A., Yuning, J., Tang, H. Renewable energy source (RES)based islanded DC microgrid with enhanced resilient control (Open Access) (2019) International Journal of Electrical Power and Energy Systems, 113, pp. 461-471. Cited 16 times. doi: 10.1016/j.ijepes.2019.05.069Mansouri, N., Lashab, A., Sera, D., Guerrero, J.M., Cherif, A. Large photovoltaic power plants integration: A review of challenges and solutions (Open Access) (2019) Energies, 12 (19), art. no. 3798. Cited 37 times. https://www.mdpi.com/1996-1073/12/19 doi: 10.3390/en12193798Gil-González, W., Montoya, O.D., Holguín, E., Garces, A., Grisales-Noreña, L.F. Economic dispatch of energy storage systems in dc microgrids employing a semidefinite programming model (2019) Journal of Energy Storage, 21, pp. 1-8. Cited 90 times. http://www.journals.elsevier.com/journal-of-energy-storage/ doi: 10.1016/j.est.2018.10.025Azaioud, H., Claeys, R., Knockaert, J., Vandevelde, L., Desmet, J. A low-voltage dc backbone with aggregated res and bess: Benefits compared to a traditional low-voltage ac system (Open Access) (2021) Energies, 14 (5), art. no. 1420. Cited 13 times. https://www.mdpi.com/1996-1073/14/5/1420/pdf doi: 10.3390/en14051420Grisales-Noreña, L.F., Ocampo-Toro, J.A., Rosales-Muñoz, A.A., Cortes-Caicedo, B., Montoya, O.D. An Energy Management System for PV Sources in Standalone and Connected DC Networks Considering Economic, Technical, and Environmental Indices (2022) Sustainability (Switzerland), 14 (24), art. no. 16429. Cited 6 times. http://www.mdpi.com/journal/sustainability/ doi: 10.3390/su142416429Montoya, O.D., Gil-González, W., Molina-Cabrera, A. Exact minimization of the energy losses and the CO2 emissions in isolated DC distribution networks using PV sources (Open Access) (2021) DYNA (Colombia), 88 (217), pp. 178-184. Cited 7 times. http://www.scielo.org.co/pdf/dyna/v88n217/2346-2183-dyna-88-217-178.pdf doi: 10.15446/dyna.v88n217.93099Barrera, N.A.G., González, D.C.P., Mesa, F., Aristizábal, A.J. Procedure for the practical and economic integration of solar PV energy in the city of Bogotá (2021) Energy Reports, 7, pp. 163-180. Cited 6 times. http://www.journals.elsevier.com/energy-reports/ doi: 10.1016/j.egyr.2021.08.091Simiyu, P., Xin, A., Wang, K., Adwek, G., Salman, S. Multiterminal medium voltage DC distribution network hierarchical control (Open Access) (2020) Electronics (Switzerland), 9 (3), art. no. 506. Cited 15 times. https://www.mdpi.com/2079-9292/9/3/506/pdf doi: 10.3390/electronics9030506Sawant, P.T., Bhattar, C.L. Optimization of PV System Using Particle Swarm Algorithm under Dynamic Weather Conditions (Open Access) (2016) Proceedings - 6th International Advanced Computing Conference, IACC 2016, art. no. 7544836, pp. 208-213. Cited 18 times. ISBN: 978-146738286-1 doi: 10.1109/IACC.2016.47Kumar, S., Kaur, T., Upadhyay, S., Sharma, V., Vatsal, D. Optimal Sizing of Stand Alone Hybrid Renewable Energy System with Load Shifting (Open Access) (2020) Energy Sources, Part A: Recovery, Utilization and Environmental Effects. Cited 25 times. http://www.tandf.co.uk/journals/titles/15567036.asp doi: 10.1080/15567036.2020.1831107Ogunsina, A.A., Petinrin, M.O., Petinrin, O.O., Offornedo, E.N., Petinrin, J.O., Asaolu, G.O. Optimal distributed generation location and sizing for loss minimization and voltage profile optimization using ant colony algorithm (2021) SN Applied Sciences, 3 (2), art. no. 248. Cited 26 times. springer.com/snas doi: 10.1007/s42452-021-04226-yVatambeti, R., Dhal, P.K. Congestion Management based Optimal Sizing of PV System using MultiVerse Optimization Algorithm (Open Access) (2019) 2019 5th International Conference on Advanced Computing and Communication Systems, ICACCS 2019, art. no. 8728387, pp. 1055-1058. Cited 2 times. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8722826 ISBN: 978-153869533-3 doi: 10.1109/ICACCS.2019.8728387Sultana, S., Roy, P.K. Krill herd algorithm for optimal location of distributed generator in radial distribution system (Open Access) (2016) Applied Soft Computing Journal, 40, pp. 391-404. Cited 130 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/621920/description#description doi: 10.1016/j.asoc.2015.11.036Suyarov, A., Hasanov, M., Boliev, A., Nazarov, F. Whale Optimization Algorithm For Intogreting Distributed Generators In Radial Distribution Network (2021) SSRN Electron. J. Cited 2 times.Bakri, M.F.M., Othman, Z., Sulaiman, S.I., Rahman, N.H.A. Sizing Optimization of Whale Optimization Algorithm for Hybrid Stand-Alone Photovoltaic System (Open Access) (2021) Proceeding - 2021 IEEE 17th International Colloquium on Signal Processing and Its Applications, CSPA 2021, art. no. 9377279, pp. 18-23. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9377254 ISBN: 978-073814397-2 doi: 10.1109/CSPA52141.2021.9377279Valencia, A., Hincapie, R.A., Gallego, R.A. Optimal location, selection, and operation of battery energy storage systems and renewable distributed generation in medium–low voltage distribution networks (2021) Journal of Energy Storage, 34, art. no. 102158. Cited 61 times. http://www.journals.elsevier.com/journal-of-energy-storage/ doi: 10.1016/j.est.2020.102158Kazem, H.A., Chaichan, M.T., Al-Waeli, A.H.A., Gholami, A. A systematic review of solar photovoltaic energy systems design modelling, algorithms, and software (2022) Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 44 (3), pp. 6709-6736. Cited 9 times. http://www.tandf.co.uk/journals/titles/15567036.asp doi: 10.1080/15567036.2022.2100517Garces, A. On the convergence of Newton's method in power flow studies for dc microgrids (Open Access) (2018) IEEE Transactions on Power Systems, 33 (5), art. no. 8327530, pp. 5770-5777. Cited 120 times. doi: 10.1109/TPWRS.2018.2820430Li, J., Liu, F., Wang, Z., Low, S.H., Mei, S. Optimal Power Flow in Stand-Alone DC Microgrids (2018) IEEE Transactions on Power Systems, 33 (5), art. no. 8279503, pp. 5496-5506. Cited 113 times. doi: 10.1109/TPWRS.2018.2801280Montoya, O.D., Zishan, F., Giral-Ramírez, D.A. Recursive Convex Model for Optimal Power Flow Solution in Monopolar DC Networks (Open Access) (2022) Mathematics, 10 (19), art. no. 3649. Cited 7 times. http://www.mdpi.com/journal/mathematics doi: 10.3390/math10193649Grant, M., Boyd, S. (2014) CVX: Matlab Software for Disciplined Convex Programming, Version 2.1. Cited 8331 times. Available online http://cvxr.com/cvxGrant, M.C., Boyd, S.P. Graph implementations for nonsmooth convex programs (2008) Lecture Notes in Control and Information Sciences, 371, pp. 95-110. Cited 2049 times. https://www.springer.com/series/642 ISBN: 978-184800154-1 doi: 10.1007/978-1-84800-155-8_7http://purl.org/coar/resource_type/c_6501ORIGINALenergies-16-01105-v2 (1).pdfenergies-16-01105-v2 (1).pdfapplication/pdf385399https://repositorio.utb.edu.co/bitstream/20.500.12585/12186/1/energies-16-01105-v2%20%281%29.pdf205fa17f1640f322bf7dcdadc5ad5a41MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12186/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12186/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTenergies-16-01105-v2 (1).pdf.txtenergies-16-01105-v2 (1).pdf.txtExtracted texttext/plain45658https://repositorio.utb.edu.co/bitstream/20.500.12585/12186/4/energies-16-01105-v2%20%281%29.pdf.txta40522b4c6e40079aa7a9a3d5d9398abMD54THUMBNAILenergies-16-01105-v2 (1).pdf.jpgenergies-16-01105-v2 (1).pdf.jpgGenerated Thumbnailimage/jpeg8144https://repositorio.utb.edu.co/bitstream/20.500.12585/12186/5/energies-16-01105-v2%20%281%29.pdf.jpgd3a57db7a2e26ee39897fda3332c3200MD5520.500.12585/12186oai:repositorio.utb.edu.co:20.500.12585/121862023-07-20 00:17:39.082Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=