Differential diagnosis of hemorrhagic fevers using ARTMAP and an Artificial Immune System

The differential diagnosis of endemic hemorrhagic fevers in tropical countries is by no means an easy task for medical practitioners. Several diseases often overlap with others in terms of signs and symptoms, thus making this diagnosis a difficult, error-prone process. Machine Learning algorithms po...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2013
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/9075
Acceso en línea:
https://hdl.handle.net/20.500.12585/9075
Palabra clave:
ARTMAP
Dengue
Differential diagnosis
Hemorrhagic fever
Leptospirosis
Machine learning
Malaria
Neural networks
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_b505b521992b41ac6fcad40d09e5d9a4
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/9075
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Differential diagnosis of hemorrhagic fevers using ARTMAP and an Artificial Immune System
title Differential diagnosis of hemorrhagic fevers using ARTMAP and an Artificial Immune System
spellingShingle Differential diagnosis of hemorrhagic fevers using ARTMAP and an Artificial Immune System
ARTMAP
Dengue
Differential diagnosis
Hemorrhagic fever
Leptospirosis
Machine learning
Malaria
Neural networks
title_short Differential diagnosis of hemorrhagic fevers using ARTMAP and an Artificial Immune System
title_full Differential diagnosis of hemorrhagic fevers using ARTMAP and an Artificial Immune System
title_fullStr Differential diagnosis of hemorrhagic fevers using ARTMAP and an Artificial Immune System
title_full_unstemmed Differential diagnosis of hemorrhagic fevers using ARTMAP and an Artificial Immune System
title_sort Differential diagnosis of hemorrhagic fevers using ARTMAP and an Artificial Immune System
dc.subject.keywords.none.fl_str_mv ARTMAP
Dengue
Differential diagnosis
Hemorrhagic fever
Leptospirosis
Machine learning
Malaria
Neural networks
topic ARTMAP
Dengue
Differential diagnosis
Hemorrhagic fever
Leptospirosis
Machine learning
Malaria
Neural networks
description The differential diagnosis of endemic hemorrhagic fevers in tropical countries is by no means an easy task for medical practitioners. Several diseases often overlap with others in terms of signs and symptoms, thus making this diagnosis a difficult, error-prone process. Machine Learning algorithms possess some useful qualities to tackle this kind of pattern recognition problems. In this paper, a neural-network-based approach to the differential diagnosis of Dengue Fever, Leptospirosis and Malaria, using the Adaptive Resonance Theory Map (ARTMAP) family is discussed. The use of an Artificial Immune System (CLONALG) led to the identification of a subset of symptoms that enhanced the performance of the classifiers considered. Training, validation and testing phases were conducted using a dataset consisting of medical charts from patients treated in the last 10 years at Napoleón Franco Pareja Children Hospital in Cartagena, Colombia. Results obtained on the test set are promising, and support the feasibility of this approach. © 2013 by IJAI.
publishDate 2013
dc.date.issued.none.fl_str_mv 2013
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:32:53Z
dc.date.available.none.fl_str_mv 2020-03-26T16:32:53Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv International Journal of Artificial Intelligence; Vol. 11, Núm. 13 A; pp. 150-169
dc.identifier.issn.none.fl_str_mv 09740635
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/9075
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 55782426500
55783129400
55782490400
identifier_str_mv International Journal of Artificial Intelligence; Vol. 11, Núm. 13 A; pp. 150-169
09740635
Universidad Tecnológica de Bolívar
Repositorio UTB
55782426500
55783129400
55782490400
url https://hdl.handle.net/20.500.12585/9075
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-84879759875&partnerID=40&md5=e126f6afb294df43dee6cf023435ca5a
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/9075/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021642535305216
spelling 2020-03-26T16:32:53Z2020-03-26T16:32:53Z2013International Journal of Artificial Intelligence; Vol. 11, Núm. 13 A; pp. 150-16909740635https://hdl.handle.net/20.500.12585/9075Universidad Tecnológica de BolívarRepositorio UTB557824265005578312940055782490400The differential diagnosis of endemic hemorrhagic fevers in tropical countries is by no means an easy task for medical practitioners. Several diseases often overlap with others in terms of signs and symptoms, thus making this diagnosis a difficult, error-prone process. Machine Learning algorithms possess some useful qualities to tackle this kind of pattern recognition problems. In this paper, a neural-network-based approach to the differential diagnosis of Dengue Fever, Leptospirosis and Malaria, using the Adaptive Resonance Theory Map (ARTMAP) family is discussed. The use of an Artificial Immune System (CLONALG) led to the identification of a subset of symptoms that enhanced the performance of the classifiers considered. Training, validation and testing phases were conducted using a dataset consisting of medical charts from patients treated in the last 10 years at Napoleón Franco Pareja Children Hospital in Cartagena, Colombia. Results obtained on the test set are promising, and support the feasibility of this approach. © 2013 by IJAI.Recurso electrónicoapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84879759875&partnerID=40&md5=e126f6afb294df43dee6cf023435ca5aDifferential diagnosis of hemorrhagic fevers using ARTMAP and an Artificial Immune Systeminfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1ARTMAPDengueDifferential diagnosisHemorrhagic feverLeptospirosisMachine learningMalariaNeural networksCaicedo Torres W.Quintana Álvarez, Moisés RamónPinzón H.Brown, M., Vickers, I., Salas, R., Smikle, M., Leptospirosis in suspected cases of dengue in Jamaica (2010) 2002-2007., Tropical doctor, 40 (2), pp. 92-94Burnet, F., (1959) The clonal selection theory of acquired immunity, , Abraham Flexner lectures, Vanderbilt University PressCarpenter, G., Default artmap (2003) Proceedings of the International Joint Conference on Neural Networks 2003, 2, pp. 1396-1401Carpenter, G., Grossberg, S., Art 2: Self-organization of stable category recognition codes for analog input patterns (1987) Appl Opt, 26 (23), pp. 4919-4930Carpenter, G., Grossberg, S., A massively parallel architecture for a self-organizing neural pattern recognition machine (1987) Computer Vision, Graphics, and Image Processing, 37 (1), pp. 54-115Carpenter, G., Grossberg, S., Art3: Hierarchical search using chemical transmitters in self-organizing pattern recognition architectures (1990) Neural Networks, 3 (2), pp. 129-152Carpenter, G., Grossberg, S., Markuzon, N., Reynolds, J., Rosen, D., Fuzzy artmap: A neural network architecture for incremental supervised learning of analog multidimensional maps (1992) IEEE Trans Neural Networks, 3 (5), pp. 698-713Carpenter, G., Grossberg, S., Rosen, D., Fuzzy art: Fast stable learning and categorization of analog patterns by an adaptive resonance system (1991) Neural Netw, 4, pp. 759-771Carpenter, G., Markuzon, N., Artmap-ic and medical diagnosis: Instance counting and inconsistent cases (1998) Neural Networks, pp. 323-336Carpenter, G., Milenova, B., Noeske, B., Distributed artmap: A neural network for fast distributed supervised learning (1998) Neural Networks, 11 (5), pp. 793-813Chadwick, D., Arch, B., Wilder-Smith, A., Paton, N., Distinguishing dengue fever from other infections on the basis of simple clinical and laboratory features: Application of logistic regression analysis (2006) Journal of Clinical Virology, 35 (2), pp. 147-153De Castro, L.N., Von Zuben, F.J., Learning and optimization using the clonal selection principle (2002) IEEE Transactions on Evolutionary Computation, 6 (3), pp. 239-251Downs, J., Harrison, R., Kennedy, R., Cross, S., Application of the fuzzy artmap neural network model to medical pattern classification tasks (1996) Artificial Intelligence in Medicine, 8 (4), pp. 403-428Ellis, T., Imrie, A., Katz, A., Effler, P., Underrecognition of leptospirosis during a dengue fever outbreak in Hawaii (2008) 2001-2002., Vector borne and zoonotic diseases (Larchmont, N.Y.), 8 (4), pp. 541-547Goodman, P., Kaburlasos, V., Egbert, D., Carpenter, G., Grossberg, S., Reynolds, J., Rosen, D., Hartz, A., Fuzzy artmap neural network compared to linear discriminant analysis prediction of the length of hospital stay in patients with pneumonia (1992) Proceedings of the IEEE 1992 Intl Conf. on Systems, Man and Cybernetics, 1, pp. 748-753Halstead, S.E., (2008) Dengue, , Tropical Medicine: Science and Practice, Imperial College PressHornik, K., Stinchcombe, M., White, H., Multilayer feedforward networks are universal approximators (1989) Neural Netw, 2, pp. 359-366Kasuba, T., Simplified fuzzy artmap (1993) AI Expert, 8, pp. 19-25Kohonen, T., Self-organized formation of topologically correct feature maps (1982) Biological Cybernetics, 43, pp. 59-69. , 10.1007/BF00337288Levett, P., Branch, S., Edwards, C., Detection of dengue infection in patients investigated for leptospirosis in barbados (2000) Am J Trop Med Hyg, 62 (1), pp. 112-114Libraty, D.H., Myint, K.S.A., Murray, C.K., Gibbons, R.V., Mammen, M.P., Endy, T.P., Li, W., Ennis, F.A., A comparative study of leptospirosis and dengue in thai children (2007) PLoS Negl Trop Dis, 1 (3), pp. e111Mandell, D.E., Bennet, J.E., Kgrostad, D.A., Principles and Practice of Infectious Diseases (2000) Churchill Livingstone, pp. 2818-2831Mandell, D.E., Bennet, J.E., Tappero, J.A., Ashford, D.A., Perkins, B.A., (2000) Principles and Practice of Infectious Diseases, pp. 2495-2501. , Churchill LivingstoneMandell, D.E., Bennet, J.E., Tsai, T.A., (2000) Principles and Practice of Infectious Diseases, pp. 1715-1736. , Churchill LivingstoneMarkuzon, N., Gaehde, S., Ash, A., Carpenter, G., Moskowitz, M., Predicting risk of an adverse event in complex medical data sets using fuzzy artmap network (1994) Artificial Intelligence in Medicine: Interpreting Clinical Data, pp. 93-96. , Technical Report SeriesMoore, B., Art 1 and pattern clustering (1989) Proceedings of the 1988 Connectionist Models Summer School by David Touretzky, pp. 174-185. , Geoffrey Hinton and Terrence SejnowskiPotts, J., Rothman, A., Clinical and laboratory features that distinguish dengue from other febrile illnesses in endemic populations (2008) Tropical medicine international health TM IH, 13 (11), pp. 1328-1340Rico-Hesse, R., Molecular evolution and distribution of dengue viruses type 1 and 2 in nature (1990) Virology, 174 (2), pp. 479-493Roche, J.E.A., Isolement de 96 souches de virus dengue 2 partir de mosquiques captures en cote-d'ivoire et haute-volta (1983) Ann Virol, 134, pp. 233-244Rudnick, A., Lim, T., (1986) Dengue fever studies in malaysia, pp. 127-197. , Inst Med Res Malaysia Bull (23)Traore-Lamizana, M., Zeller, H., Monlun, E., Mondo, M., Hervy, J., Adam, F., Digoutte, J., Dengue 2 outbreak in southeastern senegal during 1990: Virus isolations from mosquitoes (diptera: Culicidae) (1994) Journal of Medical Entomology, 31 (4), pp. 623-627Yang, Y., An evaluation of statistical approaches to text categorization (1999) Information Retrieval, 1, pp. 69-90. , 10.1023/A:1009982220290Zadeh, L., Fuzzy sets (1965) Information Control, 8, pp. 338-353http://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9075/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9075oai:repositorio.utb.edu.co:20.500.12585/90752023-04-24 09:35:15.807Repositorio Institucional UTBrepositorioutb@utb.edu.co