Output Voltage Regulation for DC-DC Buck Converters: A Passivity-Based PI Design

This paper presents a global tracking passivity-based proportional-integral (PI) control for output voltage regulation of a DC-DC Buck converter. The proposed controller is based on passivity formulation since DC-DC Buck converter has a passive structure in open-loop. Additionally, the controller ta...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/9160
Acceso en línea:
https://hdl.handle.net/20.500.12585/9160
Palabra clave:
Asymptotically stability.
DC-DC buck converter
Global tracking
Passivity-based proportional-integral control
Controllers
Electric inverters
MATLAB
Proportional control systems
Three term control systems
Two term control systems
Voltage regulators
Asymptotically stability
Closed-loop operation
DC-DC buck converter
Dynamical performance
Global tracking
Output voltage regulation
Passive structures
Proportional-integral control
DC-DC converters
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_b5016614793969c363928c88863d6904
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/9160
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Output Voltage Regulation for DC-DC Buck Converters: A Passivity-Based PI Design
title Output Voltage Regulation for DC-DC Buck Converters: A Passivity-Based PI Design
spellingShingle Output Voltage Regulation for DC-DC Buck Converters: A Passivity-Based PI Design
Asymptotically stability.
DC-DC buck converter
Global tracking
Passivity-based proportional-integral control
Controllers
Electric inverters
MATLAB
Proportional control systems
Three term control systems
Two term control systems
Voltage regulators
Asymptotically stability
Closed-loop operation
DC-DC buck converter
Dynamical performance
Global tracking
Output voltage regulation
Passive structures
Proportional-integral control
DC-DC converters
title_short Output Voltage Regulation for DC-DC Buck Converters: A Passivity-Based PI Design
title_full Output Voltage Regulation for DC-DC Buck Converters: A Passivity-Based PI Design
title_fullStr Output Voltage Regulation for DC-DC Buck Converters: A Passivity-Based PI Design
title_full_unstemmed Output Voltage Regulation for DC-DC Buck Converters: A Passivity-Based PI Design
title_sort Output Voltage Regulation for DC-DC Buck Converters: A Passivity-Based PI Design
dc.subject.keywords.none.fl_str_mv Asymptotically stability.
DC-DC buck converter
Global tracking
Passivity-based proportional-integral control
Controllers
Electric inverters
MATLAB
Proportional control systems
Three term control systems
Two term control systems
Voltage regulators
Asymptotically stability
Closed-loop operation
DC-DC buck converter
Dynamical performance
Global tracking
Output voltage regulation
Passive structures
Proportional-integral control
DC-DC converters
topic Asymptotically stability.
DC-DC buck converter
Global tracking
Passivity-based proportional-integral control
Controllers
Electric inverters
MATLAB
Proportional control systems
Three term control systems
Two term control systems
Voltage regulators
Asymptotically stability
Closed-loop operation
DC-DC buck converter
Dynamical performance
Global tracking
Output voltage regulation
Passive structures
Proportional-integral control
DC-DC converters
description This paper presents a global tracking passivity-based proportional-integral (PI) control for output voltage regulation of a DC-DC Buck converter. The proposed controller is based on passivity formulation since DC-DC Buck converter has a passive structure in open-loop. Additionally, the controller takes advantage of the PI actions to design a control law that guarantees asymptotically stability in the Lyapunov's sense under closed-loop operation. The proposed controller does not depend on the parameters, which makes it a robust controller. The robustness of the proposed controller is checked by comparing its dynamical performance in front of a conventional PID controller. All simulation results were fulfilled via MATLAB software. © 2019 IEEE.
publishDate 2019
dc.date.issued.none.fl_str_mv 2019
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:33:05Z
dc.date.available.none.fl_str_mv 2020-03-26T16:33:05Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_c94f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.hasversion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Conferencia
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv 2019 IEEE 10th Latin American Symposium on Circuits and Systems, LASCAS 2019 - Proceedings; pp. 189-192
dc.identifier.isbn.none.fl_str_mv 9781728104522
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/9160
dc.identifier.doi.none.fl_str_mv 10.1109/LASCAS.2019.8667557
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 57191493648
56919564100
36449223500
37104976300
57190661793
identifier_str_mv 2019 IEEE 10th Latin American Symposium on Circuits and Systems, LASCAS 2019 - Proceedings; pp. 189-192
9781728104522
10.1109/LASCAS.2019.8667557
Universidad Tecnológica de Bolívar
Repositorio UTB
57191493648
56919564100
36449223500
37104976300
57190661793
url https://hdl.handle.net/20.500.12585/9160
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.conferencedate.none.fl_str_mv 24 February 2019 through 27 February 2019
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85064155449&doi=10.1109%2fLASCAS.2019.8667557&partnerID=40&md5=a67b6653f764b470001a6c5b0a203e84
Scopus2-s2.0-85064155449
institution Universidad Tecnológica de Bolívar
dc.source.event.none.fl_str_mv 10th IEEE Latin American Symposium on Circuits and Systems, LASCAS 2019
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/9160/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021687094542336
spelling 2020-03-26T16:33:05Z2020-03-26T16:33:05Z20192019 IEEE 10th Latin American Symposium on Circuits and Systems, LASCAS 2019 - Proceedings; pp. 189-1929781728104522https://hdl.handle.net/20.500.12585/916010.1109/LASCAS.2019.8667557Universidad Tecnológica de BolívarRepositorio UTB5719149364856919564100364492235003710497630057190661793This paper presents a global tracking passivity-based proportional-integral (PI) control for output voltage regulation of a DC-DC Buck converter. The proposed controller is based on passivity formulation since DC-DC Buck converter has a passive structure in open-loop. Additionally, the controller takes advantage of the PI actions to design a control law that guarantees asymptotically stability in the Lyapunov's sense under closed-loop operation. The proposed controller does not depend on the parameters, which makes it a robust controller. The robustness of the proposed controller is checked by comparing its dynamical performance in front of a conventional PID controller. All simulation results were fulfilled via MATLAB software. © 2019 IEEE.Departamento Administrativo de Ciencia, Tecnología e Innovación, COLCIENCIAS: 727-2015 Department of Science, Information Technology and Innovation, Queensland GovernmentIEEE;IEEE Circuits and Systems Society (CAS);IEEE Council on Electronic Design Automation (CEDA)This work was partially supported by the National Scholarship Program Doctorates of the Administrative Department of Science, Technology and Innovation of Colombia (COLCIENCIAS), by calling contest 727-2015 and the PhD program in Engineering of the Technological University of Pereira.Recurso electrónicoapplication/pdfengInstitute of Electrical and Electronics Engineers Inc.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85064155449&doi=10.1109%2fLASCAS.2019.8667557&partnerID=40&md5=a67b6653f764b470001a6c5b0a203e84Scopus2-s2.0-8506415544910th IEEE Latin American Symposium on Circuits and Systems, LASCAS 2019Output Voltage Regulation for DC-DC Buck Converters: A Passivity-Based PI Designinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fAsymptotically stability.DC-DC buck converterGlobal trackingPassivity-based proportional-integral controlControllersElectric invertersMATLABProportional control systemsThree term control systemsTwo term control systemsVoltage regulatorsAsymptotically stabilityClosed-loop operationDC-DC buck converterDynamical performanceGlobal trackingOutput voltage regulationPassive structuresProportional-integral controlDC-DC converters24 February 2019 through 27 February 2019Gil-González, WalterMontoya O.D.Garces A.Serra F.M.Magaldi G.Planas, E., Andreu, J., Ǵarate, J.I., De Martinez, A.I., Ibarra, E., AC and DC technology in microgrids: A review (2015) Renewable Sustainable Energy Rev, 43, pp. 726-749Parhizi, S., Lotfi, H., Khodaei, A., Bahramirad, S., State of the art in research on microgrids: A review (2015) IEEE Access, 3, pp. 890-925Veĺazquez, I.O., Espinosa-Ṕerez, G.R., Montoya, O.D., Ruiz, A.G., Na, L.F.G.N., Current control mode in pv systems integrated with DC-DC converters for MPPT: An IDA-PBC Approach (2018) 2018 IEEE Green Technologies Conference (GreenTech), pp. 1-6. , AprilGiraldo, O.D.M., Ruiz, A.G., Veĺazquez, I.O., Espinosa-Ṕerez, G.R., Passivity-based control for battery charging/discharging applications by Using a Buck-Boost DC-DC Converter (2018) 2018 IEEE Green Technologies Conference (GreenTech), pp. 89-94. , AprilHe, P., Khaligh, A., Comprehensive analyses and comparison of 1 kw isolated DC-DC Converters for Bidirectional EV Charging Systems (2017) IEEE Trans. Transport. Electrific, 3 (1), pp. 147-156. , MarchShang, F., Niu, G., Krishnamurthy, M., Design and analysis of a high-voltage-gain step-up resonant DC-DC Converter for Transportation Applications (2017) IEEE Trans. Transport. Electrific, 3 (1), pp. 157-167. , MarchMazumder, S.K., Tahir, M., Acharya, K., Master-slave current-sharing control of a parallel DC-DC converter system over an RF Communication Interface (2008) IEEE Transactions on Industrial Electronics, 55 (1), pp. 59-66. , JanKim, S., Park, Y., Ali, I., Nga, T.T.K., Ryu, H., Khan, Z.H.N., Park, S., Lee, K., Design of a high efficiency DC-DC buck converter with two-step digital PWM and low power self-Tracking zero current detector for iot applications (2018) IEEE Transactions on Power Electronics, 33 (2), pp. 1428-1439. , FebMukherjee, N., Strickland, D., Control of cascaded DC-DC converter-based hybrid battery energy storage Systems-Part I: Stability Issue (2016) IEEE Trans. Ind. Electron, 63 (4), pp. 2340-2349. , AprilCavanini, L., Cimini, G., Ippoliti, G., Bemporad, A., Model predictive control for pre-compensated voltage mode controlled DC-DC converters (2017) IET Control Theory Applications, 11 (15), pp. 2514-2520Wang, J., Zhang, C., Li, S., Yang, J., Li, Q., Finite-Time output feedback control for PWM-based DC-DC buck power Converters of Current Sensorless Mode (2017) IEEE Trans. Control Syst. Technol, 25 (4), pp. 1359-1371. , JulyWu, B., Yang, J., Wang, J., Li, S., Extended state observer based control for DC-DC buck converters subject to mismatched disturbances (2014) Proceedings of the 33rd Chinese Control Conference, pp. 8080-8085. , JulyMa, L., Zhang, Y., Yang, X., Ding, S., Dong, L., Quasi-continuous second-order sliding mode control of buck converter (2018) IEEE Access, 6, pp. 17859-17867Ling, R., Maksimovic, D., Leyva, R., Second-order sliding-mode controlled synchronous buck DC-DC converter (2016) IEEE Trans. Power Electron, 31 (3), pp. 2539-2549. , MarchTsai, C., Chen, B., Li, H., Switching frequency stabilization techniques for adaptive on-Time Controlled buck converter with adaptive voltage positioning mechanism (2016) IEEE Trans. Power Electron, 31 (1), pp. 443-451. , JanYang, J., Wu, B., Li, S., Yu, X., Design and qualitative robustness analysis of an dobc approach for DC-DC Buck Converters with Unmatched Circuit Parameter Perturbations (2016) IEEE Trans. Circuits Syst. i Regul. Pap, 63 (4), pp. 551-560. , AprilCisneros, R., Mancilla-David, F., Ortega, R., Passivity-based control of a grid-connected small-scale windmill with Limited Control Authority (2013) IEEE Journal of Emerging and Selected Topics in Power Electronics, 1 (4), pp. 247-259. , DecSerra, F.M., Angelo, C.H.D., IDA-PBC controller design for grid connected Front End Converters under non-ideal grid conditions (2017) Electr. Power Syst. Res, 142, pp. 12-19Talj, R., Ortega, R., Astolfi, A., Passivity and robust pi control of the air supply system of a pem fuel cell model (2011) Automatica, 47 (12), pp. 2554-2561Cisneros, R., Pirro, M., Bergna, G., Ortega, R., Ippoliti, G., Molinas, M., Global tracking passivity-based PI control of bilinear systems: Application to the interleaved boost and modular multilevel converters (2015) Control Eng. Pract, 43, pp. 109-119Perez, M., Ortega, R., Espinoza, J.R., Passivity-based PI control of switched power converters (2004) IEEE Trans. Control Syst. Technol, 12 (6), pp. 881-890. , NovZeng, J., Zhang, Z., Qiao, W., An interconnection and damping assignment passivity-based controller for a DC-DC Boost Converter with a Constant Power Load (2014) IEEE Trans. Ind. Appl, 50 (4), pp. 2314-2322. , JulyKhalil, H., (2013) Nonlinear Systems Ser. Always Learning, , Pearson Education LimitedPerko, L., (2013) Differential Equations Dynamical Systems Ser. Texts in Applied Mathematics, , Springer New YorkGil-Gonźalez, W., Montoya, O.D., Passivity-based pi control of a smes system to support power in electrical grids: A bilinear approach (2018) Journal of Energy Storage, 18, pp. 459-466http://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9160/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9160oai:repositorio.utb.edu.co:20.500.12585/91602023-05-26 10:20:42.323Repositorio Institucional UTBrepositorioutb@utb.edu.co