Accurate and efficient derivative-free three-phase power flow method for unbalanced distribution networks
The power flow problem in three-phase unbalanced distribution networks is addressed in this research using a derivative-free numerical method based on the upper-triangular matrix. The upper-triangular matrix is obtained from the topological connection among nodes of the network (i.e., through a grap...
- Autores:
-
Montoya, Oscar Danilo
Giraldo, Juan S.
Grisales-Noreña, Luis Fernando
Chamorro, Harold R.
Alvarado-Barrios, Lázaro
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/10334
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/10334
- Palabra clave:
- Banach fixed-point theorem
Three-phase power flow formulation
Upper-triangular representation
Recursive formulation
Genetic algorithm
Phase-balancing
LEMB
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc/4.0/
Summary: | The power flow problem in three-phase unbalanced distribution networks is addressed in this research using a derivative-free numerical method based on the upper-triangular matrix. The upper-triangular matrix is obtained from the topological connection among nodes of the network (i.e., through a graph-based method). The main advantage of the proposed three-phase power flow method is the possibility of working with single-, two-, and three-phase loads, including ∆- and Y-connections. The Banach fixed-point theorem for loads with Y-connection helps ensure the convergence of the upper-triangular power flow method based an impedance-like equivalent matrix. Numerical results in three-phase systems with 8, 25, and 37 nodes demonstrate the effectiveness and computational efficiency of the proposed three-phase power flow formulation compared to the classical three-phase backward/forward method and the implementation of the power flow problem in the DigSILENT software. Comparisons with the backward/forward method demonstrate that the proposed approach is 47.01%, 47.98%, and 36.96% faster in terms of processing times by employing the same number of iterations as when evaluated in the 8-, 25-, and 37-bus systems, respectively. An application of the Chu-Beasley genetic algorithm using a leader–follower optimization approach is applied to the phase-balancing problem utilizing the proposed power flow in the follower stage. Numerical results present optimal solutions with processing times lower than 5 s, which confirms its applicability in large-scale optimization problems employing embedding master–slave optimization structures. |
---|