Predictive power control for electric vehicle charging applications
This paper presents a direct predictive power control (DPPC) design for vehicle charging applications. The proposed control design allows working in the Park's reference frame avoiding the usage of the phase-lock loops, which help increasing the reliability of the system. Direct power control a...
- Autores:
-
Gil-González, Walter
Serra, Federico
Domínguez Jiménez, Juan Antonio
Campillo Jiménez, Javier Eduardo
Montoya, Oscar
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/10024
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/10024
https://ieeexplore.ieee.org/document/9272192
- Palabra clave:
- Direct predictive power control
Active and reactive power management
Discrete control design
Electric vehicle charging applications
Voltage source converters
LEMB
- Rights
- closedAccess
- License
- http://purl.org/coar/access_right/c_14cb
id |
UTB2_b37b8e5f99880fe5b0a5ac4489a04d12 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/10024 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Predictive power control for electric vehicle charging applications |
title |
Predictive power control for electric vehicle charging applications |
spellingShingle |
Predictive power control for electric vehicle charging applications Direct predictive power control Active and reactive power management Discrete control design Electric vehicle charging applications Voltage source converters LEMB |
title_short |
Predictive power control for electric vehicle charging applications |
title_full |
Predictive power control for electric vehicle charging applications |
title_fullStr |
Predictive power control for electric vehicle charging applications |
title_full_unstemmed |
Predictive power control for electric vehicle charging applications |
title_sort |
Predictive power control for electric vehicle charging applications |
dc.creator.fl_str_mv |
Gil-González, Walter Serra, Federico Domínguez Jiménez, Juan Antonio Campillo Jiménez, Javier Eduardo Montoya, Oscar |
dc.contributor.author.none.fl_str_mv |
Gil-González, Walter Serra, Federico Domínguez Jiménez, Juan Antonio Campillo Jiménez, Javier Eduardo Montoya, Oscar |
dc.subject.keywords.spa.fl_str_mv |
Direct predictive power control Active and reactive power management Discrete control design Electric vehicle charging applications Voltage source converters |
topic |
Direct predictive power control Active and reactive power management Discrete control design Electric vehicle charging applications Voltage source converters LEMB |
dc.subject.armarc.none.fl_str_mv |
LEMB |
description |
This paper presents a direct predictive power control (DPPC) design for vehicle charging applications. The proposed control design allows working in the Park's reference frame avoiding the usage of the phase-lock loops, which help increasing the reliability of the system. Direct power control allows defining active and reactive power references as function of the control objectives independently. In the case of the active, it is defined as function of the battery current or state-of-charge desired profiles, while reactive power can be projected as function of the grid requirements. Numerical results show that the proposed DPPC allows controlling active and reactive power regardless with minimum steady-state errors (e r ≤ 1%); in addition, the state-of-charge and the battery currents are controlled to evidence the applicability of the proposed DPPC design for tracking different desired references. All the numerical test are performed in MATLAB/simulink. |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020-12-01 |
dc.date.accessioned.none.fl_str_mv |
2021-02-16T15:08:04Z |
dc.date.available.none.fl_str_mv |
2021-02-16T15:08:04Z |
dc.date.submitted.none.fl_str_mv |
2021-02-12 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/lecture |
dc.type.hasversion.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_8544 |
status_str |
publishedVersion |
dc.identifier.citation.spa.fl_str_mv |
Citation & Abstract W. Gil-González, F. Serra, J. Dominguez, J. Campillo and O. Montoya, "Predictive Power Control for Electric Vehicle Charging Applications," 2020 IEEE ANDESCON, Quito, Ecuador, 2020, pp. 1-6, doi: 10.1109/ANDESCON50619.2020.9272192. |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/10024 |
dc.identifier.url.none.fl_str_mv |
https://ieeexplore.ieee.org/document/9272192 |
dc.identifier.doi.none.fl_str_mv |
10.1109/ANDESCON50619.2020.9272192 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Universidad Tecnológica de Bolívar |
identifier_str_mv |
Citation & Abstract W. Gil-González, F. Serra, J. Dominguez, J. Campillo and O. Montoya, "Predictive Power Control for Electric Vehicle Charging Applications," 2020 IEEE ANDESCON, Quito, Ecuador, 2020, pp. 1-6, doi: 10.1109/ANDESCON50619.2020.9272192. 10.1109/ANDESCON50619.2020.9272192 Universidad Tecnológica de Bolívar Repositorio Universidad Tecnológica de Bolívar |
url |
https://hdl.handle.net/20.500.12585/10024 https://ieeexplore.ieee.org/document/9272192 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_14cb |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/closedAccess |
eu_rights_str_mv |
closedAccess |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_14cb |
dc.format.extent.none.fl_str_mv |
6 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.place.spa.fl_str_mv |
Cartagena de Indias |
dc.source.spa.fl_str_mv |
2020 IEEE ANDESCON |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/10024/1/168.pdf https://repositorio.utb.edu.co/bitstream/20.500.12585/10024/2/license.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/10024/3/168.pdf.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/10024/4/168.pdf.jpg |
bitstream.checksum.fl_str_mv |
19a01811bbf88fc531f83fee983b9595 e20ad307a1c5f3f25af9304a7a7c86b6 75617e1df4398292548a2712a8df2677 315a745eeae1f2618de40134e1a4df80 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021593793298432 |
spelling |
Gil-González, Walter1747fed9-7818-4c10-a283-efb3c73ebb27Serra, Federicoa782614d-85bf-48c1-9292-571df3989593Domínguez Jiménez, Juan Antoniobd8466a9-a81f-42a1-a377-0400f508ab41Campillo Jiménez, Javier Eduardof3ff0112-bc56-4d8f-9a9e-55b707704a07Montoya, Oscar008c220c-d50f-41c7-8294-a0fd23bfd9f22021-02-16T15:08:04Z2021-02-16T15:08:04Z2020-12-012021-02-12Citation & Abstract W. Gil-González, F. Serra, J. Dominguez, J. Campillo and O. Montoya, "Predictive Power Control for Electric Vehicle Charging Applications," 2020 IEEE ANDESCON, Quito, Ecuador, 2020, pp. 1-6, doi: 10.1109/ANDESCON50619.2020.9272192.https://hdl.handle.net/20.500.12585/10024https://ieeexplore.ieee.org/document/927219210.1109/ANDESCON50619.2020.9272192Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThis paper presents a direct predictive power control (DPPC) design for vehicle charging applications. The proposed control design allows working in the Park's reference frame avoiding the usage of the phase-lock loops, which help increasing the reliability of the system. Direct power control allows defining active and reactive power references as function of the control objectives independently. In the case of the active, it is defined as function of the battery current or state-of-charge desired profiles, while reactive power can be projected as function of the grid requirements. Numerical results show that the proposed DPPC allows controlling active and reactive power regardless with minimum steady-state errors (e r ≤ 1%); in addition, the state-of-charge and the battery currents are controlled to evidence the applicability of the proposed DPPC design for tracking different desired references. All the numerical test are performed in MATLAB/simulink.6 páginasapplication/pdfeng2020 IEEE ANDESCONPredictive power control for electric vehicle charging applicationsinfo:eu-repo/semantics/lectureinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_8544http://purl.org/coar/version/c_970fb48d4fbd8a85Direct predictive power controlActive and reactive power managementDiscrete control designElectric vehicle charging applicationsVoltage source convertersLEMBinfo:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbCartagena de IndiasInvestigadoresA. Di Giorgio, F. Liberati and S. Canale, "Electric vehicles charging control in a smart grid: A model predictive control approach", Control Engineering Practice, vol. 22, pp. 147-162, 2014.A. Gusrialdi, Z. Qu and M. A. Simaan, "Scheduling and cooperative control of electric vehicles’ charging at highway service stations", 53rd IEEE Conference on Decision and Control, pp. 6465-6471, 2014.M. Yilmaz and P. T. Krein, "Review of the Impact of Vehicle-to-Grid Technologies on Distribution Systems and Utility Interfaces", IEEE Trans. Power Electron, vol. 28, no. 12, pp. 5673-5689, 2013.L. M. Fernández, F. Serra, C. D. Angelo and O. Montoya, "Control of a charging station for electric vehicles", J. Phys. Conf. Ser, vol. 1448, pp. 012013, jan 2020.F. M. Serra and C. H. De Angelo, "IDA-PBC control of a single-phase battery charger for electric vehicles with unity power factor", 2016 IEEE Conference on Control Applications (CCA), pp. 261-266, 2016.S. Haghbin, S. Lundmark, M. Alakula and O. Carlson, "Grid-Connected Integrated Battery Chargers in Vehicle Applications: Review and New Solution", IEEE Trans. Ind. Electron, vol. 60, no. 2, pp. 459-473, 2013.O. D. Montoya, W. J. Gil-González, A. Garcés, A. Escobar and L. F. Grisales-Noreña, "Nonlinear Control for Battery Energy Storage Systems in Power Grids", 2018 IEEE Green Technologies Conference (GreenTech), pp. 65-70, 2018.A. W. Danté, K. Agbossou, S. Kelouwani, A. Cardenas and J. Bouchard, "Online modeling and identification of plug-in electric vehicles sharing a residential station", International Journal of Electrical Power & Energy Systems, vol. 108, pp. 162-176, 2019.W. Gil-González, O. D. Montoya and A. Garces, "Direct power control of electrical energy storage systems: A passivity-based PI approach", Electr. Power Syst. Res, vol. 175, pp. 105885, 2019, [online] Available: http://www.sciencedirect.com/science/article/pii/S0378779619302044.W. Gil-González, O. D. Montoya and A. Garces, "Direct power control for VSC-HVDC systems: An application of the global tracking passivity-based PI approach", International Journal of Electrical Power & Energy Systems, vol. 110, pp. 588-597, 2019.W. Gil-González, F. M. Serra, O. D. Montoya, C. A. Ramírez and C. Orozco-Henao, "Direct Power Compensation in AC Distribution Networks with SCES Systems via PI-PBC Approach", Symmetry, vol. 12, no. 4, pp. 666, apr 2020.W. Gil, O. D. Montoya, A. Garces et al., "Direct power control of electrical energy storage systems: A passivity-based PI approach", Electric Power Systems Research, vol. 175, pp. 105885, 2019.M. Zoghlami and F. Bacha, "Implementation of different strategies of direct power control", IREC2015 The Sixth International Renewable Energy Congress, pp. 1-6, 2015.J. Rodriguez and P. Cortes, Predictive control of power converters and electrical drives, John Wiley & Sons, vol. 40, 2012.L. Wang, S. Chai, D. Yoo, L. Gan and K. Ng, PID and predictive control of electrical drives and power converters using MATLAB/Simulink, John Wiley & Sons, 2015.http://purl.org/coar/resource_type/c_c94fORIGINAL168.pdf168.pdfAbstractapplication/pdf83694https://repositorio.utb.edu.co/bitstream/20.500.12585/10024/1/168.pdf19a01811bbf88fc531f83fee983b9595MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/10024/2/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD52TEXT168.pdf.txt168.pdf.txtExtracted texttext/plain1064https://repositorio.utb.edu.co/bitstream/20.500.12585/10024/3/168.pdf.txt75617e1df4398292548a2712a8df2677MD53THUMBNAIL168.pdf.jpg168.pdf.jpgGenerated Thumbnailimage/jpeg45696https://repositorio.utb.edu.co/bitstream/20.500.12585/10024/4/168.pdf.jpg315a745eeae1f2618de40134e1a4df80MD5420.500.12585/10024oai:repositorio.utb.edu.co:20.500.12585/100242023-05-26 08:16:23.101Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo= |