The maximal subspace for generation of (a,k)-regularized families
Let A be a linear operator in a Banach space X. We define a subspace of X and a norm such that the part of A in such subspace generates an (a, k)-regularized resolvent family. This space is maximal-unique in a suitable sense and nontrivial, under certain conditions on the kernels a and k. © 2012 Edg...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2012
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/8763
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/8763
- Palabra clave:
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
Summary: | Let A be a linear operator in a Banach space X. We define a subspace of X and a norm such that the part of A in such subspace generates an (a, k)-regularized resolvent family. This space is maximal-unique in a suitable sense and nontrivial, under certain conditions on the kernels a and k. © 2012 Edgardo Alvarez-Pardo and Carlos Lizama. |
---|