Detection of broken bars in three-phase motors by using curve fits and classification algorithms

Since they transform electrical energy into mechanical energy, three-phase induction motors are one of the main assets that companies have. Therefore, good monitoring of their conditions and diagnosing their faults is essential. In this article, we propose a curve fitting technique and classificatio...

Full description

Autores:
Hoyos, Gabriel
Puertas, Edwin
Villa, Jose Luis
Martinez-Santos, Juan Carlos
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12176
Acceso en línea:
https://hdl.handle.net/20.500.12585/12176
Palabra clave:
Induction Motors;
Fault Detection;
Stators
LEMB
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_b1dcae3d7e17da412948903d06be3519
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12176
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Detection of broken bars in three-phase motors by using curve fits and classification algorithms
title Detection of broken bars in three-phase motors by using curve fits and classification algorithms
spellingShingle Detection of broken bars in three-phase motors by using curve fits and classification algorithms
Induction Motors;
Fault Detection;
Stators
LEMB
title_short Detection of broken bars in three-phase motors by using curve fits and classification algorithms
title_full Detection of broken bars in three-phase motors by using curve fits and classification algorithms
title_fullStr Detection of broken bars in three-phase motors by using curve fits and classification algorithms
title_full_unstemmed Detection of broken bars in three-phase motors by using curve fits and classification algorithms
title_sort Detection of broken bars in three-phase motors by using curve fits and classification algorithms
dc.creator.fl_str_mv Hoyos, Gabriel
Puertas, Edwin
Villa, Jose Luis
Martinez-Santos, Juan Carlos
dc.contributor.author.none.fl_str_mv Hoyos, Gabriel
Puertas, Edwin
Villa, Jose Luis
Martinez-Santos, Juan Carlos
dc.subject.keywords.spa.fl_str_mv Induction Motors;
Fault Detection;
Stators
topic Induction Motors;
Fault Detection;
Stators
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description Since they transform electrical energy into mechanical energy, three-phase induction motors are one of the main assets that companies have. Therefore, good monitoring of their conditions and diagnosing their faults is essential. In this article, we propose a curve fitting technique and classification algorithms for a current motor phase to detect broken bars inside the motor. The data set is in the IEEE database, where the data was acquired, simulating the conditions of healthy and broken bars by varying the load condition. The curve fitting technique gives me essential attributes such as the signal's amplitude, frequency, and phase shift, supported by the Fourier transform, which informs how the signal power is a function of frequency. Furthermore, we extracted attributes to train the classifiers, achieving 85% accuracy in classifying the number of broken bars within the engine. © 2022 IEEE.
publishDate 2022
dc.date.issued.none.fl_str_mv 2022
dc.date.accessioned.none.fl_str_mv 2023-07-19T21:15:01Z
dc.date.available.none.fl_str_mv 2023-07-19T21:15:01Z
dc.date.submitted.none.fl_str_mv 2023
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
status_str draft
dc.identifier.citation.spa.fl_str_mv Hoyos, G., Puertas, E., Villa, J. L., & Martinez-Santos, J. C. (2022, November). Detection of broken bars in three-phase motors by using curve fits and classification algorithms. In 2022 IEEE ANDESCON (pp. 1-6). IEEE.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12176
dc.identifier.doi.none.fl_str_mv 10.1109/ANDESCON56260.2022.9989583
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Hoyos, G., Puertas, E., Villa, J. L., & Martinez-Santos, J. C. (2022, November). Detection of broken bars in three-phase motors by using curve fits and classification algorithms. In 2022 IEEE ANDESCON (pp. 1-6). IEEE.
10.1109/ANDESCON56260.2022.9989583
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12176
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 6 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv 2022 IEEE ANDESCON: Technology and Innovation for Andean Industry, ANDESCON 2022
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12176/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12176/1/Scopus%20-%20Document%20details%20-%20Detection%20of%20broken%20bars%20in%20three-phase%20motors%20by%20using%20curve%20fits%20and%20classification%20algorithms.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12176/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12176/4/Scopus%20-%20Document%20details%20-%20Detection%20of%20broken%20bars%20in%20three-phase%20motors%20by%20using%20curve%20fits%20and%20classification%20algorithms.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12176/5/Scopus%20-%20Document%20details%20-%20Detection%20of%20broken%20bars%20in%20three-phase%20motors%20by%20using%20curve%20fits%20and%20classification%20algorithms.pdf.jpg
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
c80c0a80102883e8814530a271b9d0cd
e20ad307a1c5f3f25af9304a7a7c86b6
55619899ec96c0c32e059b4a35160834
1b4cbb81ea8762b369b2b79f4350d8f8
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021578715824128
spelling Hoyos, Gabriel448e8cd3-150f-4443-9281-7efff4caa82fPuertas, Edwin5a1b1566-e112-43dc-8ac7-310ea9af8f05Villa, Jose Luis46e8f721-4d8f-4e19-b0db-2bb2ebedb33dMartinez-Santos, Juan Carlos5c958644-c78d-401d-8ba9-bbd39fe773182023-07-19T21:15:01Z2023-07-19T21:15:01Z20222023Hoyos, G., Puertas, E., Villa, J. L., & Martinez-Santos, J. C. (2022, November). Detection of broken bars in three-phase motors by using curve fits and classification algorithms. In 2022 IEEE ANDESCON (pp. 1-6). IEEE.https://hdl.handle.net/20.500.12585/1217610.1109/ANDESCON56260.2022.9989583Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarSince they transform electrical energy into mechanical energy, three-phase induction motors are one of the main assets that companies have. Therefore, good monitoring of their conditions and diagnosing their faults is essential. In this article, we propose a curve fitting technique and classification algorithms for a current motor phase to detect broken bars inside the motor. The data set is in the IEEE database, where the data was acquired, simulating the conditions of healthy and broken bars by varying the load condition. The curve fitting technique gives me essential attributes such as the signal's amplitude, frequency, and phase shift, supported by the Fourier transform, which informs how the signal power is a function of frequency. Furthermore, we extracted attributes to train the classifiers, achieving 85% accuracy in classifying the number of broken bars within the engine. © 2022 IEEE.6 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf22022 IEEE ANDESCON: Technology and Innovation for Andean Industry, ANDESCON 2022Detection of broken bars in three-phase motors by using curve fits and classification algorithmsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Induction Motors;Fault Detection;StatorsLEMBCartagena de IndiasChicco, D., Tötsch, N., Jurman, G. The matthews correlation coefficient (Mcc) is more reliable than balanced accuracy, bookmaker informedness, and markedness in two-class confusion matrix evaluation (2021) BioData Mining, 14, art. no. 13, pp. 1-22. Cited 245 times. http://www.biodatamining.org/ doi: 10.1186/s13040-021-00244-zMartínez, D.G. Mantenimiento Prescriptivo a Partir de la Predicción de Eventos AnómalosGrandhi, R.T., Prakash, N.K. Machine-Learning Based Fault Diagnosis of Electrical Motors Using Acoustic Signals (2021) Data Intelligence and Cognitive Informatics., pp. 663-671. Cited 6 times. SpringerGundewar, S., Kane, P., Andhare, A. Detection of broken rotor bar fault in an induction motor using convolution neural network (2022) Journal of Advanced Mechanical Design, Systems and Manufacturing, 16 (2), art. no. A2. Cited 3 times. https://www.jstage.jst.go.jp/article/jamdsm/16/2/16_2022jamdsm0020/_article/-char/en doi: 10.1299/jamdsm.2022jamdsm0020Halder, S., Bhat, S., Dora, B.K. Inverse thresholding to spectrogram for the detection of broken rotor bar in induction motor (2022) Measurement: Journal of the International Measurement Confederation, 198, art. no. 111400. Cited 5 times. https://www.journals.elsevier.com/measurement doi: 10.1016/j.measurement.2022.111400Kennedy, S. (2017) RxM: What Is Prescriptive Maintenance, and How Soon Will You Need It?. Cited 3 times.Lee, C.-Y., Zhuo, G.-L. Effective rotor fault diagnosis model using multilayer signal analysis and hybrid genetic binary chicken swarm optimization (2021) Symmetry, 13 (3), art. no. 487. Cited 6 times. https://www.mdpi.com/2073-8994/13/3/487/pdf doi: 10.3390/sym13030487Liu, X., Yan, Y., Hu, K., Zhang, S., Li, H., Zhang, Z., Shi, T. Fault Diagnosis of Rotor Broken Bar in Induction Motor Based on Successive Variational Mode Decomposition (2022) Energies, 15 (3), art. no. 1196. Cited 9 times. https://www.mdpi.com/1996-1073/15/3/1196/pdf doi: 10.3390/en15031196Maciejewski, N.A.R. Deteccão e Diagn Óstico de Defeitos No Regime Transitório de Motores de Inducão Baseado em Sistemas Inteligentes PhD thesis. Universidade de São PauloMoreno-Sandoval, L.G. Assembly of Polarity, Emotion and User Statistics for Detection of Fake Profiles (2020) CLEF (Working Notes).. Cited 3 times.Puertas, E., Martinez-Santos, J.C. (2021) Phonetic Detection for Hate Speech Spreaders on Twitter. Cited 3 times.Puertas, E., Moreno-Sandoval, L.G., Redondo, J., Alvarado-Valencia, J.A., Pomares-Quimbaya, A. Detection of Sociolinguistic Features in Digital Social Networks for the Detection of Communities (Open Access) (2021) Cognitive Computation, 13 (2), pp. 518-537. Cited 4 times. http://www.springer.com/biomed/neuroscience/journal/12559 doi: 10.1007/s12559-021-09818-9Rácz, A., Bajusz, D., Héberger, K. Multi-Level Comparison of Machine Learning Classifiers and Their Performance Metrics (Open Access) (2019) Molecules (Basel, Switzerland), 24 (15). Cited 45 times. doi: 10.3390/molecules24152811Refaeilzadeh, P., Tang, L., Liu, H. Crossvalidation (2009) Encyclopedia of Database Systems, 5, pp. 532-538. Cited 1602 times.Treml, A.E. Experimental database for detecting and diagnosing rotor broken bar in a threephase induction motor (2020) IEEE DataPort. Cited 11 times.Yepez, E.C. (2021) Detección de Barras Rotas en Motores de Inducción Utilizando Análisis de Entropía de la Información en Señales de CorrienteYin, M., Vaughan, J.W., Wallach, H. Understanding the effect of accuracy on trust in machine learning models (2019) Conference on Human Factors in Computing Systems - Proceedings. Cited 183 times. ISBN: 978-145035970-2 doi: 10.1145/3290605.3300509Zhang, P., Du, Y., Habetler, T.G., Lu, B. A survey of condition monitoring and protection methods for medium-voltage induction motors (2011) IEEE Transactions on Industry Applications, 47 (1), art. no. 5620974, pp. 34-46. Cited 550 times. doi: 10.1109/TIA.2010.2090839Zhang, X., Zhang, T., Young, A.A., Li, X. Applications and comparisons of four time series models in epidemiological surveillance data (Open Access) (2014) PLoS ONE, 9 (2), art. no. e88075. Cited 106 times. http://www.plosone.org/article/fetchObject.action?uri=info%3Adoi%2F10.1371%2Fjournal.pone.0088075&representation=PDF doi: 10.1371/journal.pone.0088075http://purl.org/coar/resource_type/c_6501CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12176/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52ORIGINALScopus - Document details - Detection of broken bars in three-phase motors by using curve fits and classification algorithms.pdfScopus - Document details - Detection of broken bars in three-phase motors by using curve fits and classification algorithms.pdfapplication/pdf178867https://repositorio.utb.edu.co/bitstream/20.500.12585/12176/1/Scopus%20-%20Document%20details%20-%20Detection%20of%20broken%20bars%20in%20three-phase%20motors%20by%20using%20curve%20fits%20and%20classification%20algorithms.pdfc80c0a80102883e8814530a271b9d0cdMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12176/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTScopus - Document details - Detection of broken bars in three-phase motors by using curve fits and classification algorithms.pdf.txtScopus - Document details - Detection of broken bars in three-phase motors by using curve fits and classification algorithms.pdf.txtExtracted texttext/plain2724https://repositorio.utb.edu.co/bitstream/20.500.12585/12176/4/Scopus%20-%20Document%20details%20-%20Detection%20of%20broken%20bars%20in%20three-phase%20motors%20by%20using%20curve%20fits%20and%20classification%20algorithms.pdf.txt55619899ec96c0c32e059b4a35160834MD54THUMBNAILScopus - Document details - Detection of broken bars in three-phase motors by using curve fits and classification algorithms.pdf.jpgScopus - Document details - Detection of broken bars in three-phase motors by using curve fits and classification algorithms.pdf.jpgGenerated Thumbnailimage/jpeg6479https://repositorio.utb.edu.co/bitstream/20.500.12585/12176/5/Scopus%20-%20Document%20details%20-%20Detection%20of%20broken%20bars%20in%20three-phase%20motors%20by%20using%20curve%20fits%20and%20classification%20algorithms.pdf.jpg1b4cbb81ea8762b369b2b79f4350d8f8MD5520.500.12585/12176oai:repositorio.utb.edu.co:20.500.12585/121762023-07-20 00:17:50.613Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=