Study on high throughput nanomanufacturing of photopatternable nanofibers using tube nozzle electrospinning with multi-tubes and multi-nozzles

High throughput nanomanufacturing of photopatternable nanofibers and subsequent photopatterning is reported. For the production of high density nanofibers, the tube nozzle electrospinning (TNE) process has been used, where an array of micronozzles on the sidewall of a plastic tube are used as spinne...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2017
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/8738
Acceso en línea:
https://hdl.handle.net/20.500.12585/8738
Palabra clave:
High throughput
Large area electrospinning
Lithographically patterned nanofibers
Multijet electrospinning
SU-8 nanofibers
Tube nozzle electrospinning
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_b0309fe7bb4c06d749274d4bf07065c0
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/8738
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Study on high throughput nanomanufacturing of photopatternable nanofibers using tube nozzle electrospinning with multi-tubes and multi-nozzles
title Study on high throughput nanomanufacturing of photopatternable nanofibers using tube nozzle electrospinning with multi-tubes and multi-nozzles
spellingShingle Study on high throughput nanomanufacturing of photopatternable nanofibers using tube nozzle electrospinning with multi-tubes and multi-nozzles
High throughput
Large area electrospinning
Lithographically patterned nanofibers
Multijet electrospinning
SU-8 nanofibers
Tube nozzle electrospinning
title_short Study on high throughput nanomanufacturing of photopatternable nanofibers using tube nozzle electrospinning with multi-tubes and multi-nozzles
title_full Study on high throughput nanomanufacturing of photopatternable nanofibers using tube nozzle electrospinning with multi-tubes and multi-nozzles
title_fullStr Study on high throughput nanomanufacturing of photopatternable nanofibers using tube nozzle electrospinning with multi-tubes and multi-nozzles
title_full_unstemmed Study on high throughput nanomanufacturing of photopatternable nanofibers using tube nozzle electrospinning with multi-tubes and multi-nozzles
title_sort Study on high throughput nanomanufacturing of photopatternable nanofibers using tube nozzle electrospinning with multi-tubes and multi-nozzles
dc.subject.keywords.none.fl_str_mv High throughput
Large area electrospinning
Lithographically patterned nanofibers
Multijet electrospinning
SU-8 nanofibers
Tube nozzle electrospinning
topic High throughput
Large area electrospinning
Lithographically patterned nanofibers
Multijet electrospinning
SU-8 nanofibers
Tube nozzle electrospinning
description High throughput nanomanufacturing of photopatternable nanofibers and subsequent photopatterning is reported. For the production of high density nanofibers, the tube nozzle electrospinning (TNE) process has been used, where an array of micronozzles on the sidewall of a plastic tube are used as spinnerets. By increasing the density of nozzles, the electric fields of adjacent nozzles confine the cone of electrospinning and give a higher density of nanofibers. With TNE, higher density nozzles are easily achievable compared to metallic nozzles, e.g. an inter-nozzle distance as small as 0.5 cm and an average semi-vertical repulsion angle of 12.28° for 8-nozzles were achieved. Nanofiber diameter distribution, mass throughput rate, and growth rate of nanofiber stacks in different operating conditions and with different numbers of nozzles, such as 2, 4 and 8 nozzles, and scalability with single and double tube configurations are discussed. Nanofibers made of SU-8, photopatternable epoxy, have been collected to a thickness of over 80 μm in 240 s of electrospinning and the production rate of 0.75 g/h is achieved using the 2 tube 8 nozzle systems, followed by photolithographic micropatterning. TNE is scalable to a large number of nozzles, and offers high throughput production, plug and play capability with standard electrospinning equipment, and little waste of polymer. © 2017, The Author(s).
publishDate 2017
dc.date.issued.none.fl_str_mv 2017
dc.date.accessioned.none.fl_str_mv 2019-11-06T19:05:14Z
dc.date.available.none.fl_str_mv 2019-11-06T19:05:14Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.hasVersion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Micro and Nano Systems Letters; Vol. 5, Núm. 1
dc.identifier.issn.none.fl_str_mv 2213-9621
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/8738
dc.identifier.doi.none.fl_str_mv 10.1186/s40486-017-0044-z
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
identifier_str_mv Micro and Nano Systems Letters; Vol. 5, Núm. 1
2213-9621
10.1186/s40486-017-0044-z
Universidad Tecnológica de Bolívar
Repositorio UTB
url https://hdl.handle.net/20.500.12585/8738
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessRights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Society of Micro and Nano Systems
publisher.none.fl_str_mv Society of Micro and Nano Systems
dc.source.none.fl_str_mv https://www2.scopus.com/inward/record.uri?eid=2-s2.0-85041208020&doi=10.1186%2fs40486-017-0044-z&partnerID=40&md5=e60cc441de840e4a107974aa8cd32126
Scopus 55369366700
Scopus 36698143800
Scopus 36698427600
Scopus 7409321912
Scopus 7402126778
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/8738/1/DOI10_1186s40486-017-0044-z.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/8738/4/DOI10_1186s40486-017-0044-z.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/8738/5/DOI10_1186s40486-017-0044-z.pdf.jpg
bitstream.checksum.fl_str_mv 3293629aa40338a6d0d86b8a2385c00a
44773139cbfe9e7222f78b9b5b7d90c4
2960dcd2b1818a869baf3c4cd462224b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1808397601040498688
spelling 2019-11-06T19:05:14Z2019-11-06T19:05:14Z2017Micro and Nano Systems Letters; Vol. 5, Núm. 12213-9621https://hdl.handle.net/20.500.12585/873810.1186/s40486-017-0044-zUniversidad Tecnológica de BolívarRepositorio UTBHigh throughput nanomanufacturing of photopatternable nanofibers and subsequent photopatterning is reported. For the production of high density nanofibers, the tube nozzle electrospinning (TNE) process has been used, where an array of micronozzles on the sidewall of a plastic tube are used as spinnerets. By increasing the density of nozzles, the electric fields of adjacent nozzles confine the cone of electrospinning and give a higher density of nanofibers. With TNE, higher density nozzles are easily achievable compared to metallic nozzles, e.g. an inter-nozzle distance as small as 0.5 cm and an average semi-vertical repulsion angle of 12.28° for 8-nozzles were achieved. Nanofiber diameter distribution, mass throughput rate, and growth rate of nanofiber stacks in different operating conditions and with different numbers of nozzles, such as 2, 4 and 8 nozzles, and scalability with single and double tube configurations are discussed. Nanofibers made of SU-8, photopatternable epoxy, have been collected to a thickness of over 80 μm in 240 s of electrospinning and the production rate of 0.75 g/h is achieved using the 2 tube 8 nozzle systems, followed by photolithographic micropatterning. TNE is scalable to a large number of nozzles, and offers high throughput production, plug and play capability with standard electrospinning equipment, and little waste of polymer. © 2017, The Author(s).Recurso electrónicoapplication/pdfengSociety of Micro and Nano Systemshttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2https://www2.scopus.com/inward/record.uri?eid=2-s2.0-85041208020&doi=10.1186%2fs40486-017-0044-z&partnerID=40&md5=e60cc441de840e4a107974aa8cd32126Scopus 55369366700Scopus 36698143800Scopus 36698427600Scopus 7409321912Scopus 7402126778Study on high throughput nanomanufacturing of photopatternable nanofibers using tube nozzle electrospinning with multi-tubes and multi-nozzlesinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1High throughputLarge area electrospinningLithographically patterned nanofibersMultijet electrospinningSU-8 nanofibersTube nozzle electrospinningFang, S.P.Jao, P.F.Senior, D.E.Kim, K.T.Yoon, Y.K.Huang, Z., A review on polymer nanofibers by electrospinning and their applications in nanocomposites (2003) Compos Sci Technol, 63 (15), pp. 2223-2253Teo, W.-E., Inai, R., Ramakrishna, S., Technological advances in electrospinning of nanofibers (2011) Sci Technol Adv Mater, 12 (1), p. 013002Fang, J., Niu, H., Lin, T., Wang, X., Applications of electrospun nanofibers (2008) Chin Sci Bull, 53 (15), pp. 2265-2286Schreuder-Gibson, H., Gibson, P., Senecal, K., Sennett, M., Walker, J., Yeomans, W., Ziegler, D., Tsai, P.P., Protective textile materials based on electrospun nanofibers (2002) J Adv Mater, 34 (3), pp. 44-55Jao, P.F., Sun, W., Yoon, Y.K., Kim, G.J., (2010) Spatially Controleld Electrospun Solif Gradient Nanofiebrs for Guided Spiral Ganglion Neuron Culture, p. 2. , In Biomedical engineering society annual meetingJao, P.F., Machado, M., Cheng, X., Senior, D.E., Kim, G.J., Ding, D., Sun, W., Yoon, Y.K., Fabrication of nanoporous membrane and its nonlithographic patterning using electrospinning and stamp-thru-mold (ESTM) (2011) 2011 IEEE 24Th International Conference on Micro Electro Mechanical Systems, pp. 257-260Jao, P.F., Cheng, X., Kim, G.J., Yoon, Y.K., Fabrication of a supercapacitor using an electrospun nanofiber based separator and carbon nanofiber electrodes (2012) The 12Th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications, p. 4Jao, P.F., Fang, S.P., David, E.S., Kim, K.T., Yoon, Y.K., Nanomanufacturing of large area carbon nanofibers using tube nozzle electrospinning (TNE), lithography and carbonization processes (2012) In Electronic Components and Technology Conference (ECTC), 2012 IEEE 62Nd, pp. 2075-2081Yarin, A.L., Koombhongse, S., Reneker, D.H., Bending instability in electrospinning of nanofibers (2001) J Appl Phys, 89 (5), p. 3018Luo, C.J., Stoyanov, S.D., Stride, E., Pelan, E., Edirisinghe, M., Electrospinning versus fibre production methods: from specifics to technological convergence (2012) Chem Soc Rev, 41 (13), pp. 4708-4735Zhou, F.-L., Gong, R.-H., Porat, I., Mass production of nanofibre assemblies by electrostatic spinning (2009) Polym Int, 58 (4), pp. 331-342Theron, S.A., Yarin, A.L., Zussman, E., Kroll, E., Multiple jets in electrospinning: experiment and modeling (2005) Polymer, 46 (9), pp. 2889-2899Tomaszewski, W., Investigation of electrospinning with the use of a multi-jet electrospinning head (2005) Fibres Text East Eur, 13 (4), pp. 22-26Dosunmu, O.O., Chase, G.G., Kataphinan, W., Reneker, D.H., Electrospinning of polymer nanofibres from multiple jets on a porous tubular surface (2006) Nanotechnology, 17 (4), pp. 1123-1127Varabhas, J.S., Chase, G.G., Reneker, D.H., Electrospun nanofibers from a porous hollow tube (2008) Polymer, 49 (19), pp. 4226-4229Srivastava, Y., Marquez, M., Thorsen, T., Microfluidic electrospinning of biphasic nanofibers with Janus morphology (2009) Biomicrofluidics, 3 (1), p. 12801Zhou, F.-L., Gong, R.-H., Porat, I., Polymeric nanofibers via flat spinneret electrospinning (2009) Polym Eng Sci, 49 (12), pp. 2475-2481Kumar, A., Wei, M., Barry, C., Chen, J., Mead, J., Controlling fiber repulsion in multijet electrospinning for higher throughput (2010) Macromol Mater Eng, 295 (8), pp. 701-708Kumar, A., Asemota, C., Padilla, J., Invernale, M., Otero, T.F., Sotzing, G.A., Photopatterned conjugated polymer electrochromic nanofibers on paper (2008) J Phys: Conf Ser, 127 (1), p. 12014Sundararaghavan, H.G., Metter, R.B., Burdick, J.A., Electrospun fibrous scaffolds with multiscale and photopatterned porosity (2010) Macromol Biosci, 10 (3), pp. 265-270Kim, G., Kim, G.J., Yoon, Y.K., (2010) Lithographic Patterning and Carbonization of Electrospun SU-8 Nanofibers for a High Capacity Electrode, p. 4. , In Proceedings of solid stae sensors actuators and microsystems workshopKim, G.J., Kim, G., Yoon, Y.K., Fabrication of high energy density capacitors with micromachined carbon nanofiber electrocdes (2011) The 11Th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications, p. 4Steach, J.K., Clark, J.E., Olesik, S.V., Optimization of electrospinning an SU-8 negative photoresist to create patterned carbon nanofibers and nanobeads (2010) J Appl Polym Sci, 118 (1), pp. 405-412Sharma, C.S., Sharma, A., Madou, M., Multiscale carbon structures fabricated by direct micropatterning of electrospun mats of SU-8 photoresist nanofibers (2010) Langmuir, 26 (4), pp. 2218-2222Bellan, L.M., Craighead, H.G., Control of an electrospinning jet using electric focusing and jet-steering fields (2006) J Vac Sci Technol, B, 24 (6), pp. 3179-3183Jao, P.F., Franca, E., Fang, S.-P., Wheeler, B.C., Yoon, Y.K., Immersion lithographic patterning of electrospun nanofibers for carbon nanofibrous microelectrode arrays (2015) J Microelectrochem Syst, 24 (3), pp. 703-715http://purl.org/coar/resource_type/c_6501ORIGINALDOI10_1186s40486-017-0044-z.pdfapplication/pdf1851343https://repositorio.utb.edu.co/bitstream/20.500.12585/8738/1/DOI10_1186s40486-017-0044-z.pdf3293629aa40338a6d0d86b8a2385c00aMD51TEXTDOI10_1186s40486-017-0044-z.pdf.txtDOI10_1186s40486-017-0044-z.pdf.txtExtracted texttext/plain30510https://repositorio.utb.edu.co/bitstream/20.500.12585/8738/4/DOI10_1186s40486-017-0044-z.pdf.txt44773139cbfe9e7222f78b9b5b7d90c4MD54THUMBNAILDOI10_1186s40486-017-0044-z.pdf.jpgDOI10_1186s40486-017-0044-z.pdf.jpgGenerated Thumbnailimage/jpeg108695https://repositorio.utb.edu.co/bitstream/20.500.12585/8738/5/DOI10_1186s40486-017-0044-z.pdf.jpg2960dcd2b1818a869baf3c4cd462224bMD5520.500.12585/8738oai:repositorio.utb.edu.co:20.500.12585/87382020-10-23 04:46:14.29Repositorio Institucional UTBrepositorioutb@utb.edu.co