Fracture Dynamic Analysis of Cracked Reissner Plates Using the Boundary Element Method

This work presents a Dual Boundary Element Method/Dual Reciprocity Boundary Element Method formulation for the dynamic analysis of fractured shear deformable plates. Equations for the Dual Boundary Element Method, including the direct boundary and the traction boundary equation for Reissner plates,...

Full description

Autores:
Useche Vivero, Jairo
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/9507
Acceso en línea:
https://hdl.handle.net/20.500.12585/9507
https://www.sciencedirect.com/science/article/abs/pii/S0020768320300238
Palabra clave:
Dual boundary element method
Dual reciprocity method
Dynamic cracked plates
Shear deformable plates
J-integral
Reissner plates
Rights
closedAccess
License
http://purl.org/coar/access_right/c_14cb
id UTB2_b01bb9288493108b9553fd5103bcbc4e
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/9507
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Fracture Dynamic Analysis of Cracked Reissner Plates Using the Boundary Element Method
title Fracture Dynamic Analysis of Cracked Reissner Plates Using the Boundary Element Method
spellingShingle Fracture Dynamic Analysis of Cracked Reissner Plates Using the Boundary Element Method
Dual boundary element method
Dual reciprocity method
Dynamic cracked plates
Shear deformable plates
J-integral
Reissner plates
title_short Fracture Dynamic Analysis of Cracked Reissner Plates Using the Boundary Element Method
title_full Fracture Dynamic Analysis of Cracked Reissner Plates Using the Boundary Element Method
title_fullStr Fracture Dynamic Analysis of Cracked Reissner Plates Using the Boundary Element Method
title_full_unstemmed Fracture Dynamic Analysis of Cracked Reissner Plates Using the Boundary Element Method
title_sort Fracture Dynamic Analysis of Cracked Reissner Plates Using the Boundary Element Method
dc.creator.fl_str_mv Useche Vivero, Jairo
dc.contributor.author.none.fl_str_mv Useche Vivero, Jairo
dc.subject.keywords.spa.fl_str_mv Dual boundary element method
Dual reciprocity method
Dynamic cracked plates
Shear deformable plates
J-integral
Reissner plates
topic Dual boundary element method
Dual reciprocity method
Dynamic cracked plates
Shear deformable plates
J-integral
Reissner plates
description This work presents a Dual Boundary Element Method/Dual Reciprocity Boundary Element Method formulation for the dynamic analysis of fractured shear deformable plates. Equations for the Dual Boundary Element Method, including the direct boundary and the traction boundary equation for Reissner plates, were used for crack modeling. The Dual Reciprocity Boundary Element Method was used to treat both domain integrals related to distributed forces and inertial terms. Proposed formulation considers the rotary inertia of the plate. A general crack modeling strategy is presented. The J-Integral is used to evaluate the Dynamic Stress Resultant Intensity Factors. Test problems, including comparisons to Finite Element Method solutions, are presented. Results demonstrate, proposed formulation is a reliable method for dynamic analysis of shear deformable cracked plate bending problems.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-10-30T15:09:56Z
dc.date.available.none.fl_str_mv 2020-10-30T15:09:56Z
dc.date.issued.none.fl_str_mv 2020-05-15
dc.date.submitted.none.fl_str_mv 2020-10-28
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.spa.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Useche, J., 2020. Fracture Dynamic Analysis of Cracked Reissner Plates Using the Boundary Element Method. International Journal of Solids and Structures, 191-192, pp.315-332.
dc.identifier.issn.none.fl_str_mv 0020-7683
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/9507
dc.identifier.url.none.fl_str_mv https://www.sciencedirect.com/science/article/abs/pii/S0020768320300238
dc.identifier.doi.none.fl_str_mv 10.1016/j.ijsolstr.2020.01.017
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Useche, J., 2020. Fracture Dynamic Analysis of Cracked Reissner Plates Using the Boundary Element Method. International Journal of Solids and Structures, 191-192, pp.315-332.
0020-7683
10.1016/j.ijsolstr.2020.01.017
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/9507
https://www.sciencedirect.com/science/article/abs/pii/S0020768320300238
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_14cb
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/closedAccess
eu_rights_str_mv closedAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_14cb
dc.format.extent.none.fl_str_mv 18 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.publisher.discipline.spa.fl_str_mv Ingeniería Mecánica
dc.source.spa.fl_str_mv International Journal of Solids and Structures; Vol. 191–192, (2020) Pages 315-332
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/9507/1/44.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/9507/2/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/9507/3/44.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/9507/4/44.pdf.jpg
bitstream.checksum.fl_str_mv 0b5ecea9afebb2ddebd72bdf011e9172
e20ad307a1c5f3f25af9304a7a7c86b6
163a5f1b675291170ef1eda1836e7237
2bf3646da1fe45ca56754f50b1148f97
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021623749017600
spelling Useche Vivero, Jairo6bed9359-4992-4e29-b0a3-2604d92954742020-10-30T15:09:56Z2020-10-30T15:09:56Z2020-05-152020-10-28Useche, J., 2020. Fracture Dynamic Analysis of Cracked Reissner Plates Using the Boundary Element Method. International Journal of Solids and Structures, 191-192, pp.315-332.0020-7683https://hdl.handle.net/20.500.12585/9507https://www.sciencedirect.com/science/article/abs/pii/S002076832030023810.1016/j.ijsolstr.2020.01.017Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThis work presents a Dual Boundary Element Method/Dual Reciprocity Boundary Element Method formulation for the dynamic analysis of fractured shear deformable plates. Equations for the Dual Boundary Element Method, including the direct boundary and the traction boundary equation for Reissner plates, were used for crack modeling. The Dual Reciprocity Boundary Element Method was used to treat both domain integrals related to distributed forces and inertial terms. Proposed formulation considers the rotary inertia of the plate. A general crack modeling strategy is presented. The J-Integral is used to evaluate the Dynamic Stress Resultant Intensity Factors. Test problems, including comparisons to Finite Element Method solutions, are presented. Results demonstrate, proposed formulation is a reliable method for dynamic analysis of shear deformable cracked plate bending problems.1. Introduction 2. Plate bending equations 3. Boundary element integral formulation 4. Hypersingular integral formulation for Reissner plates 5. Dual Boundary Element Method 6. Transformation of domain integrals 7. Boundary element discretization 8. Dynamic stress intensity factor calculation 9. Example problems 10. Conclusions18 páginasapplication/pdfengInternational Journal of Solids and Structures; Vol. 191–192, (2020) Pages 315-332Fracture Dynamic Analysis of Cracked Reissner Plates Using the Boundary Element Methodinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Dual boundary element methodDual reciprocity methodDynamic cracked platesShear deformable platesJ-integralReissner platesinfo:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbCartagena de IndiasIngeniería MecánicaInvestigadoreshttp://purl.org/coar/resource_type/c_2df8fbb1ORIGINAL44.pdf44.pdfapplication/pdf104738https://repositorio.utb.edu.co/bitstream/20.500.12585/9507/1/44.pdf0b5ecea9afebb2ddebd72bdf011e9172MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/9507/2/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD52TEXT44.pdf.txt44.pdf.txtExtracted texttext/plain913https://repositorio.utb.edu.co/bitstream/20.500.12585/9507/3/44.pdf.txt163a5f1b675291170ef1eda1836e7237MD53THUMBNAIL44.pdf.jpg44.pdf.jpgGenerated Thumbnailimage/jpeg54583https://repositorio.utb.edu.co/bitstream/20.500.12585/9507/4/44.pdf.jpg2bf3646da1fe45ca56754f50b1148f97MD5420.500.12585/9507oai:repositorio.utb.edu.co:20.500.12585/95072023-04-24 09:16:49.302Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=