Unlocking the potential of Eichhornia crassipes for wastewater treatment: phytoremediation of aquatic pollutants, a strategy for advancing Sustainable Development Goal‑06 clean water

The 2030 Agenda, established in 2015, contains seventeen Sustainable Development Goals (SDGs) aimed at addressing global challenges. SDG-06, focused on clean water, drives the increase in basic sanitation coverage, the management of wastewater discharges, and water quality. Wastewater treatment coul...

Full description

Autores:
Monroy‑Licht, Andrea
Carranza‑López, Liliana
De la Parra‑Guerra, Ana C.
Acevedo‑Barrios, Rosa
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12685
Acceso en línea:
https://hdl.handle.net/20.500.12585/12685
Palabra clave:
Phytotechnologies
Phytoremediation
Eichhornia crassipes
Sustainable Development Goals
Wastewater treatment
LEMB
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_aeea11228bc2269f3cf715f092cfea14
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12685
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Unlocking the potential of Eichhornia crassipes for wastewater treatment: phytoremediation of aquatic pollutants, a strategy for advancing Sustainable Development Goal‑06 clean water
title Unlocking the potential of Eichhornia crassipes for wastewater treatment: phytoremediation of aquatic pollutants, a strategy for advancing Sustainable Development Goal‑06 clean water
spellingShingle Unlocking the potential of Eichhornia crassipes for wastewater treatment: phytoremediation of aquatic pollutants, a strategy for advancing Sustainable Development Goal‑06 clean water
Phytotechnologies
Phytoremediation
Eichhornia crassipes
Sustainable Development Goals
Wastewater treatment
LEMB
title_short Unlocking the potential of Eichhornia crassipes for wastewater treatment: phytoremediation of aquatic pollutants, a strategy for advancing Sustainable Development Goal‑06 clean water
title_full Unlocking the potential of Eichhornia crassipes for wastewater treatment: phytoremediation of aquatic pollutants, a strategy for advancing Sustainable Development Goal‑06 clean water
title_fullStr Unlocking the potential of Eichhornia crassipes for wastewater treatment: phytoremediation of aquatic pollutants, a strategy for advancing Sustainable Development Goal‑06 clean water
title_full_unstemmed Unlocking the potential of Eichhornia crassipes for wastewater treatment: phytoremediation of aquatic pollutants, a strategy for advancing Sustainable Development Goal‑06 clean water
title_sort Unlocking the potential of Eichhornia crassipes for wastewater treatment: phytoremediation of aquatic pollutants, a strategy for advancing Sustainable Development Goal‑06 clean water
dc.creator.fl_str_mv Monroy‑Licht, Andrea
Carranza‑López, Liliana
De la Parra‑Guerra, Ana C.
Acevedo‑Barrios, Rosa
dc.contributor.author.none.fl_str_mv Monroy‑Licht, Andrea
Carranza‑López, Liliana
De la Parra‑Guerra, Ana C.
Acevedo‑Barrios, Rosa
dc.subject.keywords.spa.fl_str_mv Phytotechnologies
Phytoremediation
Eichhornia crassipes
Sustainable Development Goals
Wastewater treatment
topic Phytotechnologies
Phytoremediation
Eichhornia crassipes
Sustainable Development Goals
Wastewater treatment
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description The 2030 Agenda, established in 2015, contains seventeen Sustainable Development Goals (SDGs) aimed at addressing global challenges. SDG-06, focused on clean water, drives the increase in basic sanitation coverage, the management of wastewater discharges, and water quality. Wastewater treatment could contribute to achieving 11 of the 17 SDGs. For this purpose, phytoremediation is a low-cost and adaptable alternative to the reduction and control of aquatic pollutants. The objective of this study is to highlight the role of macrophytes in the removal and degradation of these compound focusing on Eichhornia crassipes (Mart.) Solms, commonly known as water hyacinth. The reported values indicate that this plant has a removal capacity of over 70% for metals such as copper, aluminum, lead, mercury, cadmium, and metalloids such as arsenic. Additionally, it significantly improves water quality parameters such as turbidity, suspended solids, pH, dissolved oxygen, and color. It also reduces the presence of phosphates, and nitrogen compounds to valuesbelow 50%. It also plays a significant role in the removal of organic contaminants such as pesticides, pharmaceuticals, and dyes. This study describes several valuable by-products from the biomass of the water hyacinth, including animaland fish feed, energy generation (such as briquettes), ethanol, biogas, and composting. According to the analysis carried out, E. crassipes has a great capacity for phytoremediation, which makes it a viable solution for wastewater management, with great potential for water ecosystem restoration.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-06-26T14:35:16Z
dc.date.available.none.fl_str_mv 2024-06-26T14:35:16Z
dc.date.issued.none.fl_str_mv 2024-05-13
dc.date.submitted.none.fl_str_mv 2024-06-25
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
status_str draft
dc.identifier.citation.spa.fl_str_mv Monroy-Licht, A., Carranza-Lopez, L., De la Parra-Guerra, Acevedo-Barrios, R. Unlocking the potential of Eichhornia crassipes for wastewater treatment: phytoremediation of aquatic pollutants, a strategy for advancing Sustainable Development Goal-06 clean water. Environ Sci Pollut Res (2024). https://doi.org/10.1007/s11356-024-33698-9
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12685
dc.identifier.doi.none.fl_str_mv 10.1007/s11356-024-33698-9
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Monroy-Licht, A., Carranza-Lopez, L., De la Parra-Guerra, Acevedo-Barrios, R. Unlocking the potential of Eichhornia crassipes for wastewater treatment: phytoremediation of aquatic pollutants, a strategy for advancing Sustainable Development Goal-06 clean water. Environ Sci Pollut Res (2024). https://doi.org/10.1007/s11356-024-33698-9
10.1007/s11356-024-33698-9
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12685
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 22
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.publisher.sede.spa.fl_str_mv Campus Tecnológico
dc.source.spa.fl_str_mv Environmental Science and Pollution Research
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12685/1/Review%20Unlocking%20the%20potential%20of%20Eichhornia%20crassipes.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12685/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12685/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12685/4/Review%20Unlocking%20the%20potential%20of%20Eichhornia%20crassipes.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12685/5/Review%20Unlocking%20the%20potential%20of%20Eichhornia%20crassipes.pdf.jpg
bitstream.checksum.fl_str_mv d0b50489065ed9208793176e2d7c4df6
4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
72e3eca269333fb1a7967be9e408f3da
b921746f8e1134ce0b567d378c306894
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021780982988800
spelling Monroy‑Licht, Andrea6ad73059-f2b4-482c-bfdf-16715c638b0eCarranza‑López, Lilianaa182130f-d9bd-47fc-8cf9-24e74840ebb5De la Parra‑Guerra, Ana C.cbcd58de-d4df-41c7-8f96-e38f774526bdAcevedo‑Barrios, Rosa0680fd94-2a5f-4443-92a7-ce1ab0f2fd6d2024-06-26T14:35:16Z2024-06-26T14:35:16Z2024-05-132024-06-25Monroy-Licht, A., Carranza-Lopez, L., De la Parra-Guerra, Acevedo-Barrios, R. Unlocking the potential of Eichhornia crassipes for wastewater treatment: phytoremediation of aquatic pollutants, a strategy for advancing Sustainable Development Goal-06 clean water. Environ Sci Pollut Res (2024). https://doi.org/10.1007/s11356-024-33698-9https://hdl.handle.net/20.500.12585/1268510.1007/s11356-024-33698-9Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThe 2030 Agenda, established in 2015, contains seventeen Sustainable Development Goals (SDGs) aimed at addressing global challenges. SDG-06, focused on clean water, drives the increase in basic sanitation coverage, the management of wastewater discharges, and water quality. Wastewater treatment could contribute to achieving 11 of the 17 SDGs. For this purpose, phytoremediation is a low-cost and adaptable alternative to the reduction and control of aquatic pollutants. The objective of this study is to highlight the role of macrophytes in the removal and degradation of these compound focusing on Eichhornia crassipes (Mart.) Solms, commonly known as water hyacinth. The reported values indicate that this plant has a removal capacity of over 70% for metals such as copper, aluminum, lead, mercury, cadmium, and metalloids such as arsenic. Additionally, it significantly improves water quality parameters such as turbidity, suspended solids, pH, dissolved oxygen, and color. It also reduces the presence of phosphates, and nitrogen compounds to valuesbelow 50%. It also plays a significant role in the removal of organic contaminants such as pesticides, pharmaceuticals, and dyes. This study describes several valuable by-products from the biomass of the water hyacinth, including animaland fish feed, energy generation (such as briquettes), ethanol, biogas, and composting. According to the analysis carried out, E. crassipes has a great capacity for phytoremediation, which makes it a viable solution for wastewater management, with great potential for water ecosystem restoration.Universidad Tecnológica de Bolívar22application/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Environmental Science and Pollution ResearchUnlocking the potential of Eichhornia crassipes for wastewater treatment: phytoremediation of aquatic pollutants, a strategy for advancing Sustainable Development Goal‑06 clean waterinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1PhytotechnologiesPhytoremediationEichhornia crassipesSustainable Development GoalsWastewater treatmentLEMBCartagena de IndiasCampus TecnológicoPúblico generalAbdullah Al-Dhabi N, Arasu MV (2022) Biosorption of hazardous waste from the municipal wastewater by marine algal biomass. Environ Res 204(Pt B):112115. https:// doi. org/ 10. 1016/j. envres. 2021. 112115Aborode FA, Raab A, Voigt M, Costa LM, Krupp EM, Feldmann J (2016) The importance of glutathione and phytochelatins on the selenite and arsenate detoxification in Arabidopsis thaliana. J Environ Sci (china) 49:150–161. https:// doi. org/ 10. 1016/j. jes. 2016. 08. 009Aboul-Enein AM, Shanab SMM, Shalaby EA, Zahran MM, Lightfoot DA, El-Shemy HA (2014) Cytotoxic and antioxidant properties of active principals isolated from water hyacinth against four cancer cells lines. BMC Complement Altern Med 14(1):397. https:// doi. org/ 10. 1186/ 1472- 6882- 14- 397Adewumi I, Ogbiye AS (2009) Using water hyacinth (Eichhornia crassipes) to treat wastewater of a residential institution. Toxicol Environ Chem 91(5):891–903. https:// doi. org/ 10. 1080/ 02772 24080 26146 48Agunbiade FO, Olu-Owolabi BI, Adebowale KO (2009) Phytoremediation potential of Eichornia crassipes in metal-contaminated coastal water. Biores Technol. https:// doi. org/ 10. 1016/j. biort ech. 2009. 04. 011Ahmed RH, Badawi HM, Ali AS, Fayez M (2018) Growth performance of rhizobacteria on water hyacinth (Eichhornia crassipes) juices and dehydrated powder. Egypt J Aquat Res 44(1):1–7. https:// doi. org/ 10. 1016/j. ejar. 2018. 01. 002Ajayi T, Ogunbayio A (2012) Achieving environmental sustainability in wastewater treatment by phytoremediation with water hyacinth (Eichhornia Crassipes). J Sustain Dev 5(7):80–90. https:// doi. org/ 10. 5539/ jsd. v5n7p 80Ajithram A, Winowlin Jappes JT, Brintha NC (2021) Water hyacinth (Eichhornia crassipes) natural composite extraction methods and properties – a review. Mater Today: Proceedings 45:1626–1632. https:// doi. org/ 10. 1016/j. matpr. 2020. 08. 472Amalina F, Razak ASA, Krishnan S, Zularisam AW, Nasrullah M (2022) Water hyacinth (Eichhornia crassipes) for organic contaminants removal in water – a review. J Hazard Mater Adv 7:100092. https:// doi. org/ 10. 1016/j. hazadv. 2022. 100092Amm I, Sommer T, Wolf DH (2014) Protein quality control and elimination of protein waste: the role of the ubiquitin–proteasome system. Biochim Biophys Acta (BBA) - Mol Cell Res 1843(1):182– 196. https:// doi. org/ 10. 1016/j. bbamcr. 2013. 06. 031Ansari AA, Naeem M, Gill SS, AlZuaibr FM (2020) Phytoremediation of contaminated waters: an eco-friendly technology based on aquatic macrophytes application. Egypt J Aquat Res 46(4):371– 376. https:// doi. org/ 10. 1016/j. ejar. 2020. 03. 002Ashraf S, Ali Q, Zahir ZA, Ashraf S, Asghar HN (2019) Phytoremediation: environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicol Environ Saf 174:714–727. https:// doi. org/ 10. 1016/j. ecoenv. 2019. 02. 068Aurangzeb N, Nisa S, Bibi Y, Javed F, Hussain F (2014) Phytoremediation potential of aquatic herbs from steel foundry effluent. Braz J Chem Eng 31:881-886Ayanda OI, Ajayi T, Asuwaju FP (2020) Eichhornia crassipes (Mart.) Solms: uses, challenges, threats, and prospects. Sci World J 2020:3452172. https:// doi. org/ 10. 1155/ 2020/ 34521 72Balíková K, Vojtková H, Duborská E, Kim H, Matúš P, Urík M (2022) Role of exopolysaccharides of Pseudomonas in heavy metal removal and other remediation strategies. Polymers 14(20):4253. https:// doi. org/ 10. 3390/ polym 14204 253Bartodziej W, Weymouth G (1995) Waterbird abundance and activity on water-hyacinth and Egeria in the St-Marks River, Florida. J Aquat Plant Manag 33:19–22Bartram J, Brocklehurst C, Fisher MB, Luyendijk R, Hossain R, Wardlaw T, Gordon B (2014) Global monitoring of water supply and sanitation: history, methods and future challenges. Int J Environ Res Public Health 11(8):8137–8165. https:// doi. org/ 10. 3390/ ijerp h1108 08137Ben Bakrim W, Ezzariai A, Karouach F, Sobeh M, Kibret M, Hafidi M, Kouisni L, Yasri A (2022) Eichhornia crassipes (Mart.) Solms: a comprehensive review of its chemical composition, traditional use, and value-added products. Front Pharmacol 13. https:// doi. org/ 10. 3389/ fphar. 2022. 842511Biswas S, Dandapat B, Alam A, Satpati L (2022) India’s achievement towards sustainable Development Goal 6 (Ensure availability and sustainable management of water and sanitation for all) in the 2030 Agenda. BMC Public Health 22(1):2142. https:// doi. org/ 10. 1186/ s12889- 022- 14316-0Brennan M, Rondón-Sulbarán J, Sabogal-Paz LP, Fernandez-Ibañez P, Galdos-Balzategui A (2021) Conceptualising global water challenges: a transdisciplinary approach for understanding different discourses in sustainable development. J Environ Manag 298:113361. https:// doi. org/ 10. 1016/j. jenvm an. 2021. 113361Brunhoferova H, Venditti S, Schlienz M, Hansen J (2021) Removal of 27 micropollutants by selected wetland macrophytes in hydroponic conditions. Chemosphere 281:130980. https:// doi. org/ 10. 1016/j. chemo sphere. 2021. 130980Burges A, Alkorta I, Epelde L, Garbisu C (2018) From phytoremediation of soil contaminants to phytomanagement of ecosystem services in metal contaminated sites. Int J Phytorem 20(4):384–397. https:// doi. org/ 10. 1080/ 15226 514. 2017. 13653 40Carolin CF, Kumar PS, Saravanan A, Joshiba GJ, Naushad Mu (2017) Efficient techniques for the removal of toxic heavy metals from aquatic environment: a review. J Environ Chem Eng 5(3):2782– 2799. https:// doi. org/ 10. 1016/j. jece. 2017. 05. 029Castaño Osorio S, Biesheuvel PM, Spruijt E, Dykstra JE, van der Wal A (2022) Modeling micropollutant removal by nanofiltration and reverse osmosis membranes: considerations and challenges. Water Res 225:119130. https:// doi. org/ 10. 1016/j. watres. 2022. 119130Center TD, Hill MP, Cordo H, Julien M (2002) Wather hyacinth. In: Biological control of weeds in the United States. USDA Forest Service Publication FHTET. pp 41–64Chandanshive V, Kadam S, Rane N, Jeon B-H, Jadhav J, Govindwar S (2020) In situ textile wastewater treatment in high rate transpiration system furrows planted with aquatic macrophytes and floating phytobeds. Chemosphere 252:126513. https:// doi. org/ 10. 1016/j. chemo sphere. 2020. 126513Chapman DV (1996) Water quality assessments: a guide to the use of biota, sediments and water in environmental monitoring. CRC Press. https:// doi. org/ 10. 4324/ NOE04 19216 001Chow MF, Hashrim H, Chong ST, Ng YJ (2019) Investigating the effectiveness of water hyacinth fiber mat for soil erosion control. IOP Conf Ser: Mater Sci Eng 551(1):12008. https:// doi. org/ 10. 1088/ 1757- 899X/ 551/1/ 012008Clemens S (2001) Developing tools for phytoremediation: towards a molecular understanding of plant metal tolerance and accumulation. Int J Occup Med Environ Health 14(3):235–239Cobbett CS (2000) Phytochelatin biosynthesis and function in heavymetal detoxification. Curr Opin Plant Biol 3(3):211–216Coimbra ECL, Borges AC, Mounteer AH, Rosa AP (2023) Using wastewater treatment performance, biomass and physiological plant characteristics for selection of a floating macrophyte for phytoremediation of swine wastewater through the integrative entropy-fuzzy AHP-TOPSIS method. J Water Process Eng 53:103793. https:// doi. org/ 10. 1016/j. jwpe. 2023. 103793Cossu R, Haarstad K, Lavagnolo MC, Littarru P (2001) Removal of municipal solid waste COD and NH4–N by phyto-reduction: a laboratory–scale comparison of terrestrial and aquatic species at different organic loads. Ecol Eng 16(4):459–470DalCorso G, Manara A, Furini A (2013) An overview of heavy metal challenge in plants: from roots to shoots. Metallomics 5(9):1117– 1132. https:// doi. org/ 10. 1039/ c3mt0 0038aDersseh MG, Melesse AM, Tilahun SA, Abate M, Dagnew DC (2019) Chapter 19 - Water hyacinth: review of its impacts on hydrology and ecosystem services—Lessons for management of Lake Tana. In: Melesse AM, Abtew W, GB T-EH, CV Senay (eds) Elsevier. pp 237–251. https:// doi. org/ 10. 1016/ B978-0- 12- 815998- 9. 00019-1Deyris P-A, Pelissier F, Grison CM, Hesemann P, Petit E, Grison C (2023) Efficient removal of persistent and emerging organic pollutants by biosorption using abundant biomass wastes. Chemosphere 313:137307. https:// doi. org/ 10. 1016/j. chemo sphere. 2022. 137307Dong G, Chen B, Liu B, Hounjet LJ, Cao Y, Stoyanov SR, Yang M, Zhang B (2022) Advanced oxidation processes in microreactors for water and wastewater treatment: development, challenges, and opportunities. Water Res 211:118047. https:// doi. org/ 10. 1016/j. watres. 2022. 118047Elenwo EI, Akankali JA (2016) The estimation of potential yield of water hyacinth: a tool for environmental management and an economic resource for the Niger Delta region. J Sustain Dev Stud 9(2):115–137Essex B, Koop SHA, Van Leeuwen CJ (2020) Proposal for a national blueprint framework to monitor progress on water-related sustainable development goals in Europe. Environ Manage 65(1):1– 18. https:// doi. org/ 10. 1007/ s00267- 019- 01231-1Fakhri H, Arabaci DN, Ovez S, Aydin S (2022) Eichhornia crassipes root biomass to reduce antibiotic resistance dissemination and enhance biogas production of anaerobic membrane bioreactor. Environ Technol 43(26):4168–4179. https:// doi. org/ 10. 1080/ 09593 330. 2021. 19461 60Feng W, Xiao K, Zhou W, Zhu D, Zhou Y, Yuan Y, Xiao N, Wan X, Hua Y, Zhao J (2017) Analysis of utilization technologies for Eichhornia crassipes biomass harvested after restoration of wastewater. Bioresour Technol 223:287–295. https:// doi. org/ 10. 1016/j. biort ech. 2016. 10. 047Gajalakshmi S, Ramasamy EV, Abbasi SA (2002) Vermicomposting of different forms of water hyacinth by the earthworm Eudrilus eugeniae, Kinberg. Bioresour Technol 82(2):165–169. https:// doi. org/ 10. 1016/ S0960- 8524(01) 00163-8Gaurav GK, Mehmood T, Cheng L, Klemeš JJ, Shrivastava DK (2020) Water hyacinth as a biomass: a review. J Clean Prod 277:122214. https:// doi. org/ 10. 1016/j. jclep ro. 2020. 122214Ghuge SA, Nikalje GC, Kadam US, Suprasanna P, Hong JC (2023) Comprehensive mechanisms of heavy metal toxicity in plants, detoxification, and remediation. J Hazard Mater 450:131039. https:// doi. org/ 10. 1016/j. jhazm at. 2023. 131039Giraldo E, Garzón A (2002) The potential for water hyacinth to improve the quality of Bogota River water in the Muña Reservoir: comparison with the performance of waste stabilization ponds. Water Sci Technol 45(1):103–110. https:// doi. org/ 10. 2166/ wst. 2002. 0014Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science (new York, N.y.) 327(5967):812–818. https:// doi. org/ 10. 1126/ scien ce. 11853 83Gong Y, Zhou X, Ma X, Chen J (2018) Sustainable removal of formaldehyde using controllable water hyacinth. J Clean Prod 181:1–7. https:// doi. org/ 10. 1016/j. jclep ro. 2018. 01. 220Govindaswamy S, Schupp DA, Rock SA (2011) Batch and continuous removal of arsenic using hyacinth roots. Int J Phytorem 13(6):513–527. https:// doi. org/ 10. 1080/ 15226 51090 33904 78Guigues S, Bravin MN, Garnier C, Masion A, Doelsch E (2014) Isolated cell walls exhibit cation binding properties distinct from those of plant roots. Plant Soil 381(1):367–379. https:// doi. org/ 10. 1007/ s11104- 014- 2138-1Guna V, Ilangovan M, Anantha Prasad MG, Reddy N (2017) Water hyacinth: a unique source for sustainable materials and products. ACS Sustain Chem Eng 5(6):4478–4490. https:// doi. org/ 10. 1021/ acssu schem eng. 7b000 51Gunnarsson CC, Petersen CM (2007) Water hyacinths as a resource in agriculture and energy production: a literature review. Waste Manag (new York, N.y.) 27(1):117–129. https:// doi. org/ 10. 1016/j. wasman. 2005. 12. 011Guppy L, Mehta P, Qadir M (2019) Sustainable development goal 6: two gaps in the race for indicators. Sustain Sci 14(2):501–513. https:// doi. org/ 10. 1007/ s11625- 018- 0649-zGusti Wibowo Y, Tyaz Nugraha A, Rohman A (2023) Phytoremediation of several wastewater sources using Pistia stratiotes and Eichhornia crassipes in Indonesia. Environ Nanotechnol Monit Manag 20:100781. https:// doi. org/ 10. 1016/j. enmm. 2023. 100781Hadad HR, Mufarrege MDLM, Di Luca GA, Denaro AC, Nocetti E, Maine MA (2022) Potential metal phytoremediation in periurban wetlands using rooted macrophytes. Ecol Eng 182:106734. https:// doi. org/ 10. 1016/j. ecole ng. 2022. 106734He X, Zhang S, Lv X, Liu M, Ma Y, Guo S (2023) Eichhornia crassipes- rhizospheric biofilms contribute to nutrients removal and methane oxidization in wastewater stabilization ponds receiving simulative sewage treatment plants effluents. Chemosphere 322:138100. https:// doi. org/ 10. 1016/j. chemo sphere. 2023. 138100Higueras PL, Sáez-Martínez FJ, Lefebvre G, Moilleron R (2019) Contaminated sites, waste management, and green chemistry: new challenges from monitoring to remediation. Environ Sci Pollut Res 26(4):3095–3099. https:// doi. org/ 10. 1007/ s11356- 018- 3564-zHooper AM, Tsanuo MK, Chamberlain K, Tittcomb K, Scholes J, Hassanali A, Khan ZR, Pickett JA (2010) Isoschaftoside, a C-glycosylflavonoid from Desmodium uncinatum root exudate, is an allelochemical against the development of Striga. Phytochemistry 71(8):904–908. https:// doi. org/ 10. 1016/j. phyto chem. 2010. 02. 015Iqbal B, Li G, Alabbosh KF, Hussain H, Khan I, Tariq M, Javed Q, Naeem M, Ahmad N (2023) Advancing environmental sustainability through microbial reprogramming in growth improvement, stress alleviation, and phytoremediation. Plant Stress 10:100283. https:// doi. org/ 10. 1016/j. stress. 2023. 100283Jafari N (2010) Ecology and socio- economic utilization of water hyacinth ( Eichhornia crassipes Mart Solms). Appl Sci Environ Manage 14(June 2018):43–49Javed MT, Tanwir K, Akram MS, Shahid M, Niazi NK, Lindberg S (2019) Chapter 20 - Phytoremediation of cadmium-polluted water/sediment by aquatic macrophytes: role of plant-induced pH changes. In: Hasanuzzaman M, Prasad MNV, MB T-CT T, Fujita P (eds) Academic Press. pp 495–529. https:// doi. org/ 10. 1016/ B978-0- 12- 814864- 8. 00020-6Jayaweera MW, Kasturiarachchi JC, Kularatne RKA, Wijeyekoon SLJ (2008) Contribution of water hyacinth (Eichhornia crassipes (Mart.) Solms) grown under different nutrient conditions to Feremoval mechanisms in constructed wetlands. J Environ Manage 87:450–460. https:// doi. org/ 10. 1016/j. jenvm an. 2007. 01. 013Johnson DL, Stein RA (1979) Response of fish to habitat structure in standing water: proceedings of a symposium entitled interrelationships between fish and cover in standing water held during the 40th Annu96al Midwest Fish and Wildlife Conference, Columbus, Ohio, USA, Decem. American Fisheries SocietyJutakanoke R, Intaravicha N, Charoensuksai P, Mhuantong W, Boonnorat J, Sichaem J, Phongsopitanun W, Chakritbudsabong W, Rungarunlert S (2023) Alleviation of soil acidification and modification of soil bacterial community by biochar derived from water hyacinth Eichhornia crassipes. Sci Rep 13(1):397. https:// doi. org/ 10. 1038/ s41598- 023- 27557-9Kabeer R, Varghese R, Kochu J, George J, Sasi C, Sylas V (2014) Removal of copper by Eichhornia crassipes and the characterization of associated bacteria of the rhizosphere system. EnvironmentAsia 7. https:// doi. org/ 10. 14456/ ea. 2014. 20Kakavandi B, Ahmadi M (2019) Efficient treatment of saline recalcitrant petrochemical wastewater using heterogeneous UV-assisted sono-Fenton process. Ultrason Sonochem 56:25–36. https:// doi. org/ 10. 1016/j. ultso nch. 2019. 03. 005Kateregga E, Sterner T (2009) Lake Victoria fish stocks and the effects of water hyacinth. J Environ Dev 18(1):62–78. https:// doi. org/ 10. 1177/ 10704 96508 329467Khan AU, Khan AN, Waris A, Ilyas M, Zamel D (2022) Phytoremediation of pollutants from wastewater: a concise review. 17(1):488– 496. https:// doi. org/ 10. 1515/ biol- 2022- 0056Khan AHA, Kiyani A, Santiago-Herrera M, Ibáñez J, Yousaf S, Iqbal M, Martel-Martín S, Barros R (2023) Sustainability of phytoremediation: post-harvest stratagems and economic opportunities for the produced metals contaminated biomass. J Environ Manag 326:116700. https:// doi. org/ 10. 1016/j. jenvm an. 2022. 116700Koźmińska A, Wiszniewska A, Hanus-Fajerska E, Muszyńska E (2018) Recent strategies of increasing metal tolerance and phytoremediation potential using genetic transformation of plants. Plant Biotechnol Rep 12(1):1–14. https:// doi. org/ 10. 1007/ s11816- 017- 0467-2Kumar S, Dutta V (2019) Constructed wetland microcosms as sustainable technology for domestic wastewater treatment: an overview. Environ Sci Pollut Res Int 26(12):11662–11673. https:// doi. org/ 10. 1007/ s11356- 019- 04816-9Kumar V, Singh J, Kumar P (2020) Regression models for removal of heavy metals by water hyacinth (Eichhornia crassipes) from wastewater of pulp and paper processing industry. Environ Sustain 3(1):35–44. https:// doi. org/ 10. 1007/ s42398- 019- 00093-xKumari M, Tripathi BD (2014) Effect of aeration and mixed culture of Eichhornia crassipes and Salvinia natans on removal of wastewater pollutants. Ecol Eng 62:48–53. https:// doi. org/ 10. 1016/j. ecole ng. 2013. 10. 007Kurade MB, Ha Y-H, Xiong J-Q, Govindwar SP, Jang M, Jeon B-H (2021) Phytoremediation as a green biotechnology tool for emerging environmental pollution: a step forward towards sustainable rehabilitation of the environment. Chem Eng J 415:129040. https:// doi. org/ 10. 1016/j. cej. 2021. 129040Kutty S, Ngatenah SNI, Isa M, Malakahmad A (2009) Nutrients removal from municipal wastewater treatment plant effluent using Eichhornia crassipes. World Acad Sci Eng Technol Int J Environ Chem Ecol Geol Geophys Eng 3:414–419Lalitha P, Jayanthi P (2014) Antiaging activity of the skin cream containing ethyl acetate extract of Eichhornia crassipes (Mart.) SOLMS, Vol 6. (No.1). Int J Pharmtech Res pp 29–34Lay C-H, Sen B, Chen C-C, Wu J-H, Lee S-C, Lin C-Y (2013) Cofermentation of water hyacinth and beverage wastewater in powder and pellet form for hydrogen production. Biores Technol 135:610–615. https://d oi.o rg/1 0.1 016/j.b iorte ch.2 012.0 6.0 94Li Z, Chen S, Chang X (2023) Achieving clean energy via economic stability to qualify sustainable development goals in China. Econ Anal Policy. https:// doi. org/ 10. 1016/j. eap. 2023. 11. 003Lima MX, Carvalho KQ, Passig FH, Borges AC, Filippe TC, Azevedo JCR, Nagalli A (2018) Performance of different substrates in constructed wetlands planted with E. crassipes treating lowstrength sewage under subtropical conditions. Sci Total Environ 630:1365–1373. https:// doi. org/ 10. 1016/j. scito tenv. 2018. 02. 342Limmer M, Burken J (2016) Phytovolatilization of organic contaminants. Environ Sci Technol 50(13):6632–6643. https:// doi. org/ 10. 1021/ acs. est. 5b041 13Lissy AM, Madhu G (2011) Removal of heavy metals from waste water using water hyacinth. ACEEE Int J Transp Urb Dev 1(1):48–52Liu Y, Gao Z, Ji X, Wang Y, Zhang Y, Sun H, Li W, Wang L, Duan J (2023) Efficient adsorption of tebuconazole in aqueous solution by calcium modified water hyacinth-based biochar: adsorption kinetics, mechanism, and feasibility. Molecules (basel, Switzerland) 28(8):3478. https:// doi. org/ 10. 3390/ molec ules2 80834 78Loan NT, Phuong NM, Nguyet NT (2014) The role of aquatic plants and microorganisms in domestic wastewater treatment. Environ Eng Manag J 13(8):2031–2018Lu J, Fu Z, Yin Z (2008) Performance of a water hyacinth (Eichhornia crassipes) system in the treatment of wastewater from a duck farm and the effects of using water hyacinth as duck feed. J Environ Sci 20(5):513–519. https:// doi. org/ 10. 1016/ S1001- 0742(08) 62088-4Ma R, Xue Y, Ma Q, Chen Y, Yuan S, Fan J (2022) Recent advances in carbon-based materials for adsorptive and photocatalytic antibiotic removal. Nanomaterials (basel, Switzerland) 12(22):4045. https:// doi. org/ 10. 3390/ nano1 22240 45Madikizela LM (2021) Removal of organic pollutants in water using water hyacinth (Eichhornia crassipes). J Environ Manage 295:113153. https:// doi. org/ 10. 1016/j. jenvm an. 2021. 113153Mahfooz Y, Yasar A, Islam QU, Rasheed R, Naeem U, Mukhtar S (2021) Field testing phytoremediation of organic and inorganic pollutants of sewage drain by bacteria assisted water hyacinth. Int J Phytorem 23(2):139–150. https:// doi. org/ 10. 1080/ 15226 514. 2020. 18025 74Malik A (2007) Environmental challenge vis a vis opportunity: the case of water hyacinth. Environ Int 33(1):122–138. https:// doi. org/ 10. 1016/j. envint. 2006. 08. 004Malik OA, Hsu A, Johnson LA, de Sherbinin A (2015) A global indicator of wastewater treatment to inform the Sustainable Development Goals (SDGs). Environ Sci Policy 48:172–185. https:// doi. org/ 10. 1016/j. envsci. 2015. 01. 005Manara A (2012) Plant responses to heavy metal toxicity BT - plants and heavy metals. In: Furini A (ed). Springer Netherlands. pp 27–53. https:// doi. org/ 10. 1007/ 978- 94- 007- 4441-7_2Manekeu Tanetsa AE, Lekeufack M, Edzigui Tsimi ML, Tsetagho GN, Longniang RC, Fonkou T (2023) Eichhornia crassipes efficacy in secondary wastewater treatment in the Western Highlands of Cameroon. Sci World J 2023:8069142. https:// doi. org/ 10. 1155/ 2023/ 80691 42Mayo AW, Hanai EE (2017) Modeling phytoremediation of nitrogenpolluted water using water hyacinth (Eichhornia crassipes). Phys Chem Earth Parts a/b/c 100:170–180. https:// doi. org/ 10. 1016/j. pce. 2016. 10. 016Meerhoff M, Iglesis C, De Mello FT, Clemente JM, Jensen E, Lauridsen TL, Jeppsen E (2007) Effects of habitat complexity on community structure and predator avoidance behaviour of littoral zooplankton in temperate versus subtropical shallow lakes. Freshw Biol 52(6):1009–1021. https:// doi. org/ 10. 1111/j. 1365- 2427. 2007. 01748.xMishra S, Maiti A (2017) The efficiency of Eichhornia crassipes in the removal of organic and inorganic pollutants from wastewater: a review. Environ Sci Pollut Res 24(9):7921–7937. https:// doi. org/ 10. 1007/ s11356- 016- 8357-7Mishra VK, Tripathi BD (2008) Concurrent removal and accumulation of heavy metals by the three aquatic macrophytes. Biores Technol. https:// doi. org/ 10. 1016/j. biort ech. 2008. 01. 002Mlunguza NY, Ncube S, Mahlambi PN, Chimuka L, Madikizela LM (2020) Determination of selected antiretroviral drugs in wastewater, surface water and aquatic plants using hollow fibre liquid phase microextraction and liquid chromatography - tandem mass spectrometry. J Hazard Mater 382:121067. https:// doi. org/ 10. 1016/j. jhazm at. 2019. 121067Monroy AF, Vergel C, Pacheco CA (2021) Constructed wetlands to face water pollution: effective role of water hyacinth and the potential effects of this process on plant toxicity. Toxicol Lett 350:S183. https:// doi. org/ 10. 1016/ S0378- 4274(21) 00674-3Monroy-Licht A, Méndez-Cuadro D, Olivero-Verbel J (2022) Elemental mercury accumulation in Eichhornia crassipes (Mart.) Solms-Laubach. Environ Sci Pollut Res. https:// doi. org/ 10. 1007/ s11356- 022- 22521-yMorton S, Pencheon D, Squires N (2017) Sustainable Development Goals (SDGs), and their implementation: a national global framework for health, development and equity needs a systems approach at every level. Br Med Bull 124(1):81–90. https:// doi. org/ 10. 1093/ bmb/ ldx031Mrvčić J, Stanzer D, Solić E, Stehlik-Tomas V (2012) Interaction of lactic acid bacteria with metal ions: opportunities for improving food safety and quality. World J Microbiol Biotechnol 28(9):2771–2782. https:// doi. org/ 10. 1007/ s11274- 012- 1094-2Mujtaba G, Shah MUH, Hai A, Daud M, Hayat M (2024) A holistic approach to embracing the United Nation’s Sustainable Development Goal (SDG-6) towards water security in Pakistan. J Water Process Eng 57:104691. https:// doi. org/ 10. 1016/j. jwpe. 2023. 104691Mukherjee R, Nandi B (2004) Improvement of in vitro digestibility through biological treatment of water hyacinth biomass by two Pleurotus species. Int Biodeterior Biodegrad 53(1):7–12. https:// doi. org/ 10. 1016/ S0964- 8305(03) 00112-4Mukhopadhyay SK, Hossain A (1990) Management and utilization of water hyacinth vegetation as natural resource in India for the benefit of agriculture. Indian J Agron 35(1–2):218–223Nahar K, Hoque S (2021) Phytoremediation to improve eutrophic ecosystem by the floating aquatic macrophyte, water lettuce (Pistia stratiotes L.) at lab scale. Egypt J Aquat Res 47(2):231–237. https:// doi. org/ 10. 1016/j. ejar. 2021. 05. 003Nesterenko-Malkovskaya A, Kirzhner F, Zimmels Y, Armon R (2012) Eichhornia crassipes capability to remove naphthalene from wastewater in the absence of bacteria. Chemosphere 87(10):1186–1191. https:// doi. org/ 10. 1016/j. chemo sphere. 2012. 01. 060Nidheesh PV, Scaria J, Babu DS, Kumar MS (2021) An overview on combined electrocoagulation-degradation processes for the effective treatment of water and wastewater. Chemosphere 263:127907. https:// doi. org/ 10. 1016/j. chemo sphere. 2020. 127907Nigam JN (2002) Bioconversion of water-hyacinth (Eichhornia crassipes) hemicellulose acid hydrolysate to motor fuel ethanol by xylose–fermenting yeast. J Biotechnol 97(2):107–116. https:// doi. org/ 10. 1016/ S0168- 1656(02) 00013-5Obaideen K, Shehata N, Sayed ET, Abdelkareem MA, Mahmoud MS, Olabi AG (2022) The role of wastewater treatment in achieving sustainable development goals (SDGs) and sustainability guideline. Energy Nexus 7:100112. https:// doi. org/ 10. 1016/j. nexus. 2022. 100112Oberoi AS, Surendra KC, Wu D, Lu H, Wong JWC, Kumar Khanal S (2022) Anaerobic membrane bioreactors for pharmaceutical- laden wastewater treatment: a critical review. Biores Technol 361:127667. https:// doi. org/ 10. 1016/j. biort ech. 2022. 127667Parsons WT, Cuthbertson EG (2001) Noxious weeds of Australia / W.T. Parsons and E.G. Cuthbertson. CSIRO Publishing. https:// nla. gov. au/ nla. cat- vn252 1594Patel S (2012) Threats, management and envisaged utilizations of aquatic weed Eichhornia crassipes: an overview. Rev Environ Sci Biotechnol 11(3):249–259. https:// doi. org/ 10. 1007/ s11157- 012- 9289-4Paz-Alberto AM, Sigua GC (2013) Phytoremediation: a green technology to remove environmental pollutants. Am J Clim Chang 2(1):71–86. https:// doi. org/ 10. 4236/ ajcc. 2013. 21008Pramanik BK, Suja F, Zain SM, Ahmed E (2012) Biological aerated filters (BAFs) for carbon and nitrogen removal: a review. J Eng Sci Technol 7(4):428–446Qin H, Diao M, Zhang Z, Visser PM, Zhang Y, Wang Y, Yan S (2020) Responses of phytoremediation in urban wastewater with water hyacinths to extreme precipitation. J Environ Manage 271:110948. https:// doi. org/ 10. 1016/j. jenvm an. 2020. 110948Queiroz R de CS de, Maranduba HL, Hafner MB, Rodrigues LB, de Almeida Neto JA (2020) Life cycle thinking applied to phytoremediation of dairy wastewater using aquatic macrophytes for treatment and biomass production. J Clean Prod 267:122006. https:// doi. org/ 10. 1016/j. jclep ro. 2020. 122006Rani L, Srivastav AL, Kaushal J (2021) Bioremediation: an effective approach of mercury removal from the aqueous solutions. Chemosphere 280:130654. https:// doi. org/ 10. 1016/j. chemo sphere. 2021. 130654Rezania S, Ponraj M, Talaiekhozani A, Mohamad SE, Md Din MF, Taib SM, Sabbagh F, Sairan FM (2015) Perspectives of phytoremediation using water hyacinth for removal of heavy metals, organic and inorganic pollutants in wastewater. J Environ Manage 163:125–133. https:// doi. org/ 10. 1016/j. jenvm an. 2015. 08. 018Rodríguez-Gallego LR, Mazzeo N, Gorga J, Meerhoff M, Clemente J, Kruk C, Scasso F, Lacerot G, García J, Quintans F (2004) The effects of an artificial wetland dominated by free-floating plants on the restoration of a subtropical, hypertrophic lake. Lakes Reservoirs: Sci Policy Manag Sustain Use 9(3–4):203–215. https:// doi. org/ 10. 1111/j. 1440- 1770. 2004. 00245.xRomanova TE, Shuvaeva Ov, Belchenko La (2016) Phytoextraction of trace elements by water hyacinth in contaminated area of gold mine tailing. Int J Phytoremediation 18(2):190–194. https:// doi. org/ 10. 1080/ 15226 514. 2015. 10736 74Rommens W, Maes J, Dekeza N, Inghelbrecht P, Nhiwatiwa T, Holsters E, Ollevier F, Marshall B, Brendonck L (2003) The impact of water hyacinth (Eichhornia crassipes) in a eutrophic subtropical impoundment (Lake Chivero, Zimbabwe). I. Water quality. In: Archiv für Hydrobiologie. E schweizerbartsche verlags. vol 158, issue 3, pp 373–388. https:// doi. org/ 10. 1127/ 0003- 9136/ 2003/ 0158- 0373Sadasivan HP, Tharayil M (2017) Treatment of heavy metals from water by electro-phytoremediation technique. J Ecol Eng 18(5):18–26. https:// doi. org/ 10. 12911/ 22998 993/ 76208Saha PD, Shinde O, Sarkar SK (2016) Phytoremediation of industrial mines wastewater using water hyacinth. Int J Phytoremediation 19:87–96 (https:// api. seman ticsc holar. org/ Corpu sID: 16747 071)Sahu RK, Naraian R, Chandra V (2007) Accumulation of metals in naturally grown weeds (aquatic macrophytes) grown on an industrial effluent channel. CLEAN – Soil, Air, Water 35(3):261–265. https:// doi. org/ 10. 1002/ clen. 20070 0001Said NSM, Abdullah SRS, Ismail N‘I, Hasan HA, Othman AR (2020) Phytoremediation of real coffee industry effluent through a continuous two-stage constructed wetland system. Environ Technol Innov 17:100502. https:// doi. org/ 10. 1016/j. eti. 2019. 100502Salahuddin N, Abdelwahab MA, Akelah A, Elnagar M (2021) Adsorption of Congo red and crystal violet dyes onto cellulose extracted from Egyptian water hyacinth. Nat Hazards 105(2):1375–1394. https:// doi. org/ 10. 1007/ s11069- 020- 04358-1Salgot M, Folch M (2018) Wastewater treatment and water reuse. Curr Opin Environ Sci Health 2:64–74. https:// doi. org/ 10. 1016/j. coesh. 2018. 03. 005Saning A, Herou S, Dechtrirat D, Ieosakulrat C, Pakawatpanurut P, Kaowphong S, Thanachayanont C, Titirici M-M, Chuenchom L (2019) Green and sustainable zero-waste conversion of water hyacinth (Eichhornia crassipes) into superior magnetic carbon composite adsorbents and supercapacitor electrodes. RSC Adv 9(42):24248–24258. https:// doi. org/ 10. 1039/ C9RA0 3873FSanmuga Priya E, Senthamil Selvan P (2017) Water hyacinth (Eichhornia crassipes) – an efficient and economic adsorbent for textile effluent treatment – a review. Arab J Chem 10:S3548–S3558. https:// doi. org/ 10. 1016/j. arabjc. 2014. 03. 00Shabana YM, Mohamed ZA (2005) Integrated control of water hyacinth with a mycoherbicide and a phenylpropanoid pathway inhibitor. Biocontrol Sci Tech 15(7):659–669. https:// doi. org/ 10. 1080/ 09583 15050 01358 42Sharma R, Sharma K, Singh N, Kumar A (2013) Rhizosphere biology of aquatic microbes in order to access their bioremediation potential along with different aquatic macrophytes. Recent Res Sci Technol 5(1):29–32Sharma SS, Dietz K-J, Mimura T (2016) Vacuolar compartmentalization as indispensable component of heavy metal detoxification in plants. Plant Cell Environ 39(5):1112–1126. https:// doi. org/ 10. 1111/ pce. 12706Singh J, Kumar V, Kumar P, Kumar P (2022) Kinetics and prediction modeling of heavy metal phytoremediation from glass industry effluent by water hyacinth (Eichhornia crassipes). Int J Environ Sci Technol 19(6):5481–5492. https:// doi. org/ 10. 1007/ s13762- 021- 03433-9Sivaraman K, Murugesan AG (2017) Impact of release Impact of release of Neochetina spp. on growth and density of waterhyacinth Eichhornia crassipes. J Biol Control 30(3):158. https:// doi. org/ 10. 18311/ jbc/ 2016/ 15596Slak AS, Bulc TG, Vrhovsek D (2005) Comparison of nutrient cycling in a surface-flow constructed wetland and in a facultative pond treating secondary effluent. Water Sci Technol 51(12):291–298. https:// doi. org/ 10. 2166/ wst. 2005. 0486So LM, Chu LM, Wong PK (2003) Microbial enhancement of Cu2+ removal capacity of Eichhornia crassipes (Mart.). Chemosphere. https:// doi. org/ 10. 1016/ S0045- 6535(03) 00488-0Sood A, Uniyal PL, Prasanna R, Ahluwalia AS (2012) Phytoremediation potential of aquatic macrophyte. Azolla Ambio 41(2):122– 137. https:// doi. org/ 10. 1007/ s13280- 011- 0159-zTai Y, Yang Y, Li Z, Yang Y, Wang J, Zhuang P, Zou B (2018) Phytoextraction of 55-year-old wastewater-irrigated soil in a Zn-Pb mine district: effect of plant species and chelators. Environ Technol 39(16):2138– 2150. https:// doi. org/ 10. 1080/ 09593 330. 2017. 13514 93Thakur S, Singh L, Wahid ZA, Siddiqui MF, Atnaw SM, Din MFM (2016) Plant-driven removal of heavy metals from soil: uptake, translocation, tolerance mechanism, challenges, and future perspectives. Environ Monit Assess 188(4):206. https:// doi. org/ 10. 1007/ s10661- 016- 5211-9Tom AP, Jayakumar JS, Biju M, Somarajan J, Ibrahim MA (2021) Aquaculture wastewater treatment technologies and their sustainability: a review. Energy Nexus 4:100022. https:// doi. org/ 10. 1016/j. nexus. 2021. 100022Ugya AY, Imam TS (2015) The efficiency of Eicchornia crassipes in the phytoremediation of waste water from Kaduna refinery and petrochemical company. J Pharm Biol Sci 10(1):76–80. https:// doi. org/ 10. 9790/ 3008- 10147 680Ulaganathan A, Robinson JS, Rajendran S, Geevaretnam J, Shanmugam S, Natarajan A, Abdulrahman IA, Karthikeyan P (2022) Potentially toxic elements contamination and its removal by aquatic weeds in the riverine system: a comparative approach. Environ Res 206:112613. https:// doi. org/ 10. 1016/j. envres. 2021. 112613Valipour A, Raman VK, Ahn Y-H (2015) Effectiveness of domestic wastewater treatment using a bio-hedge water hyacinth wetland system. Water 7(1). https:// doi. org/ 10. 3390/ w7010 329Varjani S (2022) Prospective review on bioelectrochemical systems for wastewater treatment: achievements, hindrances and role in sustainable environment. Sci Total Environ 841:156691. https:// doi. org/ 10. 1016/j. scito tenv. 2022. 156691Verma R, Singh SP, Raj KG (2003) Assessment of changes in waterhyacinth coverage of water bodies in northern part of Bangalore city using temporal remote sensing data. Curr Sci 84(6):795–804Vizcaíno Mendoza L, Fuentes Molina N, González Fragozo H (2017) Adsorción de plomo (II) en solución acuosa con tallos y hojas de Eichhornia crassipes. In: Revista U.D.C.A Actualidad & Divulgación Científica. vol 20, pp 435–444. scielocoVu TH, Gowripalan N (2018) Mechanisms of heavy metal immobilisation using geopolymerisation techniques – a review. J Adv Concr Technol 16(3):124–135. https:// doi. org/ 10. 3151/ jact. 16. 124Wilson JRU, Center TD, Hill MP, Julien MH, Katagira FF, Njoka SW, Ogwang J, Reeder RH, Van T (2006) The decline of water hyacinth on Lake Victoria was due to biological control by Neochetina spp. Aquat Bot 87(1):90–93. https:// doi. org/ 10. 1016/j. aquab ot. 2006. 06. 006Wirnkor VA, Ngozi VE, Emeka AC, Ebere EC (2018) Water pollution scenario at river uramurukwa flowing through owerri metropolis, Imo state, Nigeria. Int J Adv Sci Res 3:40–46Xia H, Ma X (2006) Phytoremediation of ethion by water hyacinth (Eichhornia crassipes) from water. Biores Technol 97(8):1050– 1054. https:// doi. org/ 10. 1016/j. biort ech. 2005. 04. 039Xia H, Ma X (2006) Phytoremediation of ethion by water hyacinth (Eichhornia crassipes) from water. Biores Technol 97(8):1050– 1054. https:// doi. org/ 10. 1016/j. biort ech. 2005. 04. 039heavy metal-polluted land. Front Plant Sci 11:359. https:// doi. org/ 10. 3389/ fpls. 2020. 00359Yao X, Wang S, Jiao L, Yan C, Jin X (2014) Resolving the influence of nitrogen abundances on sediment organic matter in macrophytedominated lakes, using fluorescence spectroscopy. https:// doi. org/ 10. 1016/j. jes. 2014. 08. 014Yofukuji KY, Cardozo ALP, Quirino BA, Aleixo MHF, Fugi R (2021) Macrophyte diversity alters invertebrate community and fish diet. Hydrobiologia 848(4):913–927. https:// doi. org/ 10. 1007/ s10750- 020- 04501-wZaher A, Shehata N (2021) Recent advances and challenges in management of urea wastewater: a mini review. IOP Conf Ser: Mater Sci Eng 1046(1):12021. https:// doi. org/ 10. 1088/ 1757- 899X/ 1046/1/ 012021Zainuddin NA, Din MF Md, Halim KA, Salim NAA, Elias SH, Lazim ZM (2022) The phytoremediation using water hyacinth and water lettuce: correlation between sugar content, biomass growth rate, and nutrients. Jurnal Kejuruteraan. https:// api. seman ticsc holar. org/ Corpu sID: 25504 0995Zhang C, Ma X, Chen X, Tian Y, Zhou Y, Lu X, Huang T (2020) Conversion of water hyacinth to value-added fuel via hydrothermal carbonization. Energy 197:117193. https:// doi. org/ 10. 1016/j. energy. 2020. 117193Zheng J-C, Feng H-M, Lam MH-W, Lam PK-S, Ding Y-W, Yu H-Q (2009) Removal of Cu(II) in aqueous media by biosorption using water hyacinth roots as a biosorbent material. J Hazard Mater 171(1–3):780–785. https:// doi. org/ 10. 1016/j. jhazm at. 2009. 06. 078Zheng L-Y, Wu R-M, Guo W, You W-H, Ling Y-L, Fan X-L (2015) Design, synthesis and herbicidal activities of novel self-dispreading phenoxy carboxylic acid derivatives for the control of water hyacinth floating on the water surface. Chin Chem Lett 26(8):1008–1010. https:// doi. org/ 10. 1016/j. cclet. 2015. 04. 008Zhou X (2018) SDG interlinkages analysis and applications for integrated policy making. Institute for Global Environmental StrategiesZulfiqar F, Ashraf M (2022) Antioxidants as modulators of arsenicinduced oxidative stress tolerance in plants: an overview. J Hazard Mater 427:127891. https:// doi. org/ 10. 1016/j. jhazm at. 2021. 127891http://purl.org/coar/resource_type/c_6501ORIGINALReview Unlocking the potential of Eichhornia crassipes.pdfReview Unlocking the potential of Eichhornia crassipes.pdfArticulo principalapplication/pdf1465266https://repositorio.utb.edu.co/bitstream/20.500.12585/12685/1/Review%20Unlocking%20the%20potential%20of%20Eichhornia%20crassipes.pdfd0b50489065ed9208793176e2d7c4df6MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12685/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12685/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTReview Unlocking the potential of Eichhornia crassipes.pdf.txtReview Unlocking the potential of Eichhornia crassipes.pdf.txtExtracted texttext/plain104542https://repositorio.utb.edu.co/bitstream/20.500.12585/12685/4/Review%20Unlocking%20the%20potential%20of%20Eichhornia%20crassipes.pdf.txt72e3eca269333fb1a7967be9e408f3daMD54THUMBNAILReview Unlocking the potential of Eichhornia crassipes.pdf.jpgReview Unlocking the potential of Eichhornia crassipes.pdf.jpgGenerated Thumbnailimage/jpeg8519https://repositorio.utb.edu.co/bitstream/20.500.12585/12685/5/Review%20Unlocking%20the%20potential%20of%20Eichhornia%20crassipes.pdf.jpgb921746f8e1134ce0b567d378c306894MD5520.500.12585/12685oai:repositorio.utb.edu.co:20.500.12585/126852024-06-27 00:14:36.588Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=