Thermoplastic Starch (TPS)/Polylactic Acid (PLA) Blending Methodologies: A Review
Polylactic acid (PLA) and thermoplastic starch (TPS) are biodegradable polymers of biological origin, and the mixture of these polymers has been studied due to the desirable mechanical properties of PLA and the low processing cost of TPS. However, the TPS/PLA combination is thermodynamically immisci...
- Autores:
-
Martinez Villadiego, Keydis
Arias Tapia, Mary Judith
Useche Vivero, Jairo
Escobar Macías, Daniela
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/10324
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/10324
- Palabra clave:
- Biodegradable polymers
Polylactic acid
Polymer blends
Thermoplastic starch
LEMB
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc/4.0/
id |
UTB2_ae3a180b97a12987a45e818001a7bf9c |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/10324 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Thermoplastic Starch (TPS)/Polylactic Acid (PLA) Blending Methodologies: A Review |
title |
Thermoplastic Starch (TPS)/Polylactic Acid (PLA) Blending Methodologies: A Review |
spellingShingle |
Thermoplastic Starch (TPS)/Polylactic Acid (PLA) Blending Methodologies: A Review Biodegradable polymers Polylactic acid Polymer blends Thermoplastic starch LEMB |
title_short |
Thermoplastic Starch (TPS)/Polylactic Acid (PLA) Blending Methodologies: A Review |
title_full |
Thermoplastic Starch (TPS)/Polylactic Acid (PLA) Blending Methodologies: A Review |
title_fullStr |
Thermoplastic Starch (TPS)/Polylactic Acid (PLA) Blending Methodologies: A Review |
title_full_unstemmed |
Thermoplastic Starch (TPS)/Polylactic Acid (PLA) Blending Methodologies: A Review |
title_sort |
Thermoplastic Starch (TPS)/Polylactic Acid (PLA) Blending Methodologies: A Review |
dc.creator.fl_str_mv |
Martinez Villadiego, Keydis Arias Tapia, Mary Judith Useche Vivero, Jairo Escobar Macías, Daniela |
dc.contributor.author.none.fl_str_mv |
Martinez Villadiego, Keydis Arias Tapia, Mary Judith Useche Vivero, Jairo Escobar Macías, Daniela |
dc.subject.keywords.spa.fl_str_mv |
Biodegradable polymers Polylactic acid Polymer blends Thermoplastic starch |
topic |
Biodegradable polymers Polylactic acid Polymer blends Thermoplastic starch LEMB |
dc.subject.armarc.none.fl_str_mv |
LEMB |
description |
Polylactic acid (PLA) and thermoplastic starch (TPS) are biodegradable polymers of biological origin, and the mixture of these polymers has been studied due to the desirable mechanical properties of PLA and the low processing cost of TPS. However, the TPS/PLA combination is thermodynamically immiscible due to the poor interfacial interaction between the hydrophilic starch granules and the hydrophobic PLA. To overcome these limitations, researchers studied the modification, processing, and properties of the mixtures as a strategy to increase the compatibility between phases. This review highlights recent developments, current results, and trends in the field of TPS/PLA-based compounds during the last two decades, with the main focus of improving the adhesion between the two components. The TPS/PLA blends were classified as plasticized, compatible, reinforced and with nanocomposites. This article presents, based on published research, TPS/PLA combinations, considering different methods with significant improvements in mechanical properties, with promising developments for applications in food packaging and biomedicine |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-07-29T17:59:15Z |
dc.date.available.none.fl_str_mv |
2021-07-29T17:59:15Z |
dc.date.issued.none.fl_str_mv |
2021-06-17 |
dc.date.submitted.none.fl_str_mv |
2021-07-28 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasversion.spa.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.type.spa.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.identifier.citation.spa.fl_str_mv |
Martinez Villadiego, K., Arias Tapia, M.J., Useche, J. et al. Thermoplastic Starch (TPS)/Polylactic Acid (PLA) Blending Methodologies: A Review. J Polym Environ (2021). https://doi.org/10.1007/s10924-021-02207-1 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/10324 |
dc.identifier.doi.none.fl_str_mv |
10.1007/s10924-021-02207-1 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Universidad Tecnológica de Bolívar |
identifier_str_mv |
Martinez Villadiego, K., Arias Tapia, M.J., Useche, J. et al. Thermoplastic Starch (TPS)/Polylactic Acid (PLA) Blending Methodologies: A Review. J Polym Environ (2021). https://doi.org/10.1007/s10924-021-02207-1 10.1007/s10924-021-02207-1 Universidad Tecnológica de Bolívar Repositorio Universidad Tecnológica de Bolívar |
url |
https://hdl.handle.net/20.500.12585/10324 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.cc.*.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ Attribution-NonCommercial-NoDerivatives 4.0 Internacional Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
17 páginas |
dc.format.medium.none.fl_str_mv |
PDF |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.place.spa.fl_str_mv |
Cartagena de Indias |
dc.publisher.sede.spa.fl_str_mv |
Campus Tecnológico |
dc.publisher.discipline.spa.fl_str_mv |
Ingeniería Mecánica |
dc.source.spa.fl_str_mv |
Journal of Polymers and the Environment, 2021 |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/10324/1/PAPER%20MARY%20JUDITH%20ARIAS%20-%20Article_Thermoplast_Mary%20Judith%20Arias%20Ta.pdf https://repositorio.utb.edu.co/bitstream/20.500.12585/10324/2/license_rdf https://repositorio.utb.edu.co/bitstream/20.500.12585/10324/3/license.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/10324/4/PAPER%20MARY%20JUDITH%20ARIAS%20-%20Article_Thermoplast_Mary%20Judith%20Arias%20Ta.pdf.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/10324/5/PAPER%20MARY%20JUDITH%20ARIAS%20-%20Article_Thermoplast_Mary%20Judith%20Arias%20Ta.pdf.jpg |
bitstream.checksum.fl_str_mv |
32a27f50a20b2923c824523012716cdd 24013099e9e6abb1575dc6ce0855efd5 e20ad307a1c5f3f25af9304a7a7c86b6 1c5501e36d437723a0cae28d745ee7fe a6fe3a22580d88274f36dd6cd9ae401f |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021612324782080 |
spelling |
Martinez Villadiego, Keydis2318d22a-4b85-4b98-b89e-4661ca8c2859Arias Tapia, Mary Judith239f5c16-2ee2-494b-8708-8d3702dc094cUseche Vivero, Jairofa4e9db4-a773-4bc3-a3bb-c992f7e97f02Escobar Macías, Daniela3521f9ed-c305-4f8f-ae60-9b8f190b0fc92021-07-29T17:59:15Z2021-07-29T17:59:15Z2021-06-172021-07-28Martinez Villadiego, K., Arias Tapia, M.J., Useche, J. et al. Thermoplastic Starch (TPS)/Polylactic Acid (PLA) Blending Methodologies: A Review. J Polym Environ (2021). https://doi.org/10.1007/s10924-021-02207-1https://hdl.handle.net/20.500.12585/1032410.1007/s10924-021-02207-1Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarPolylactic acid (PLA) and thermoplastic starch (TPS) are biodegradable polymers of biological origin, and the mixture of these polymers has been studied due to the desirable mechanical properties of PLA and the low processing cost of TPS. However, the TPS/PLA combination is thermodynamically immiscible due to the poor interfacial interaction between the hydrophilic starch granules and the hydrophobic PLA. To overcome these limitations, researchers studied the modification, processing, and properties of the mixtures as a strategy to increase the compatibility between phases. This review highlights recent developments, current results, and trends in the field of TPS/PLA-based compounds during the last two decades, with the main focus of improving the adhesion between the two components. The TPS/PLA blends were classified as plasticized, compatible, reinforced and with nanocomposites. This article presents, based on published research, TPS/PLA combinations, considering different methods with significant improvements in mechanical properties, with promising developments for applications in food packaging and biomedicineUniversidad Tecnológica de Bolívar17 páginasPDFapplication/pdfenghttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 InternacionalAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Journal of Polymers and the Environment, 2021Thermoplastic Starch (TPS)/Polylactic Acid (PLA) Blending Methodologies: A Reviewinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/restrictedAccesshttp://purl.org/coar/resource_type/c_2df8fbb1Biodegradable polymersPolylactic acidPolymer blendsThermoplastic starchLEMBCartagena de IndiasCampus TecnológicoIngeniería MecánicaInvestigadoresKaseem M, Hamad K, Deri F (2012) Preparation and studying properties of thermoplastic starch/acrylonitrile–butadiene–styrene blend. Int J Plast Technol 16:39–49. https://doi.org/10.1007/s12588-012-9027-3Averous L, Moro L, Dole P, Fringant C (2000) Properties of thermoplastic blends: starch – polycaprolactone. Polymer 41:4157–4167Chotiprayon P, Chaisawad B, Yoksan R (2020) Thermoplastic cassava starch/poly(lactic acid) blend reinforced with coir fibres. Int J Biol Macromol 156:960–968. https://doi.org/10.1016/j.ijbiomac.2020.04.121Kuo C, Liu L, Teng W, Chang H (2016) Preparation of starch / acrylonitrile-butadiene-styrene copolymers (ABS) biomass alloys and their feasible evaluation for 3D printing applications. Compos Part B 86:36–39. https://doi.org/10.1016/j.compositesb.2015.10.005Othman SH, Majid NA, Tawakkal ISMA et al (2019) Tapioca starch films reinforced with microcrystalline cellulose for potential food packaging application. Food Sci Technol 39:605–612. https://doi.org/10.1590/fst.36017Wu Z, Huang Y, Xiao L et al (2019) Physical properties and structural characterization of starch/polyvinyl alcohol/graphene oxide composite films. Int J Biol Macromol 123:569–575. https://doi.org/10.1016/j.ijbiomac.2018.11.071Zhu F (2015) Composition, structure, physicochemical properties, and modifications of cassava starch. Carbohydr Polym 122:456–480Dawam Abdu AH, Pudjirahar S, Karina M et al (2019) Fabrication and Characterization of Sweet Potato Starch-based Bioplastics Plasticized with Glycerol. J Biol Sci 19:57–64. https://doi.org/10.3923/jbs.2019.57.64Tabasum S, Younas M, Zaeem MA et al (2019) A review on blending of corn starch with natural and synthetic polymers, and inorganic nanoparticles with mathematical modeling. Int J Biol Macromol 122:969–996Jebalia I, Maigret JE, Réguerre AL et al (2019) Morphology and mechanical behaviour of pea-based starch-protein composites obtained by extrusion. Carbohydr Polym 223:115086. https://doi.org/10.1016/j.carbpol.2019.115086Zhu F (2017) Structures, properties, modifications, and uses of oat starch. Food Chem 229:329–340Wang L, Gong Y, Li Y, Tian Y (2020) Structure and properties of soft rice starch. Int J Biol Macromol 157:10–16. https://doi.org/10.1016/j.ijbiomac.2020.04.138Punia S (2019) Barley starch: Structure, properties and in vitro digestibility - A review. Int J Biol Macromol 155:868–875Wong PY, Lai YH, Puspanadan S et al (2019) Extraction of Starch from Marine Microalgae, Chlorella salina: Efficiency and Recovery. Int J Environ Res 13:283–293. https://doi.org/10.1007/s41742-019-00173-0Du X, Jia J, Xu S, Zhou Y (2007) Molecular Structure of Starch fromPueraria lobata (Willd.) Ohwi Relative to Kuzu Starch. Starch - Stärke 59:609–613. https://doi.org/10.1002/star.200700604Wu AC, Witt T, Gilbert RG (2013) Characterization methods for starch-based materials: State of the art and perspectives. Aust J Chem 66:1550–1563Copeland L, Blazek J, Salman H, Tang MC (2009) Form and functionality of starch. Food Hydrocoll 23:1527–1534. https://doi.org/10.1016/j.foodhyd.2008.09.016Singh N, Singh J, Kaur L et al (2003) Morphological, thermal and rheological properties of starches from different botanical sources. Food Chem 81:219–231He W, Wei C (2017) Progress in C-type starches from different plant sources. Food Hydrocoll 73:162–175. https://doi.org/10.1016/j.foodhyd.2017.07.003Wang X, Huang L, Zhang C et al (2020) Research advances in chemical modifications of starch for hydrophobicity and its applications: A review. Carbohydr Polym 240:116292. https://doi.org/10.1016/j.carbpol.2020.116292Ning W, Xingxiang Z, Na H, Jianming F (2010) Effects of water on the properties of thermoplastic starch poly(lactic acid) blend containing citric acid. J Thermoplast Compos Mater 23:19–34. https://doi.org/10.1177/0892705708096549Peng S, An Y, Chen C et al (2003) Thermal degradation kinetics of uncapped and end-capped poly(propylene carbonate). Polym Degrad Stab 80:141–147. https://doi.org/10.1016/S0141-3910(02)00395-6Averous L, Boquillon N (2004) Biocomposites based on plasticized starch: Thermal and mechanical behaviours. Carbohydr Polym 56:111–122. https://doi.org/10.1016/j.carbpol.2003.11.015Ma X, Yu J, Kennedy JF (2005) Studies on the properties of natural fibers-reinforced thermoplastic starch composites. Carbohydr Polym 62:19–24. https://doi.org/10.1016/j.carbpol.2005.07.015Ferri JM, Garcia-Garcia D, Carbonell-Verdu A et al (2018) Poly(lactic acid) formulations with improved toughness by physical blending with thermoplastic starch. J Appl Polym Sci 135:45751. https://doi.org/10.1002/app.45751Garlotta D (2001) A literature review of poly(lactic acid). J Polym Environ 9:63–84. https://doi.org/10.1023/A:1020200822435Martin O, Avérous L (2001) Poly(lactic acid): Plasticization and properties of biodegradable multiphase systems. Polymer 42:6209–6219. https://doi.org/10.1016/S0032-3861(01)00086-6Wang N, Yu J, Chang PR, Ma X (2007) Influence of Citric Acid on the Properties of Glycerol-plasticized dry Starch (DTPS) and DTPS/Poly(lactic acid) Blends. Starch - Stärke 59:409–417. https://doi.org/10.1002/star.200700617Avérous L (2004) Biodegradable multiphase systems based on plasticized starch: a review. J Macromol Sci 44:231–274Soest JJG Van, Borger DB (1997) Structure and properties of compression-molded thermoplastic starch materials from normal and high‐amylose maize starches. J Appl Polym Sci 64:631–644.Nansu W, Ross S, Ross G, Mahasaranon S (2019) Effect of crosslinking agent on the physical and mechanical properties of a composite foam based on cassava starch and coconut residue fiber. Mater Today Proc 17:2010–2019. https://doi.org/10.1016/j.matpr.2019.06.249Mendes JF, Paschoalin RT, Carmona VB et al (2016) Biodegradable polymer blends based on corn starch and thermoplastic chitosan processed by extrusion. Carbohydr Polym 137:452–458. https://doi.org/10.1016/j.carbpol.2015.10.093Mościcki L, Mitrus M, Wójtowicz A et al (2012) Application of extrusion-cooking for processing of thermoplastic starch (TPS). Food Res Int 47:291–299. https://doi.org/10.1016/j.foodres.2011.07.017Jiugao Y, Ning W (2005) The effects of citric acid on the properties of thermoplastic starch plasticized by glycerol. Strake 57:494–504. https://doi.org/10.1002/star.200500423Liu H, Xie F, Yu L et al (2009) Thermal processing of starch-based polymers. Prog Polym Sci 34:1348–1368. https://doi.org/10.1016/j.progpolymsci.2009.07.001Nofar M, Sacligil D, Carreau PJ et al (2019) Poly (lactic acid) blends: Processing, properties and applications. Int J Biol Macromol 125:307–360Decaen P, Rolland-Sabaté A, Colomines G et al (2020) Influence of ionic plasticizers on the processing and viscosity of starch melts. Carbohydr Polym 230:115591. https://doi.org/10.1016/j.carbpol.2019.115591Rosa DS, Bardi MAG, MacHado LDB et al (2010) Starch plasticized with glycerol from biodiesel and polypropylene blends: Mechanical and thermal properties. J Therm Anal Calorim 102:181–186. https://doi.org/10.1007/s10973-010-0828-3Da Róz AL, Carvalho AJF, Gandini A, Curvelo AAS (2006) The effect of plasticizers on thermoplastic starch compositions obtained by melt processing. Carbohydr Polym 63:417–424. https://doi.org/10.1016/j.carbpol.2005.09.017Zhang Y, Rempel C, McLaren D (2013) Thermoplastic starch. Elsevier, New YorkOtegbayo B, Oguniyan D, Akinwumi O (2014) Physicochemical and functional characterization of yam starch for potential industrial applications. Starch/Staerke 66:235–250. https://doi.org/10.1002/star.201300056Moghaddam MRA, Razavi SMA, Jahani Y (2018) Effects of compatibilizer and thermoplastic starch (TPS) concentration on morphological, rheological, tensile, thermal and moisture sorption properties of plasticized polylactic acid/TPS blends. J Polym Environ 26:3202–3215. https://doi.org/10.1007/s10924-018-1206-7Dos Santos BH, De Souza Do Prado K, Jacinto AA, Da Silva Spinacé MA (2018) Influence of sugarcane bagasse fiber size on biodegradable composites of thermoplastic starch. J Renew Mater 6:176–182. https://doi.org/10.7569/JRM.2018.634101Zhang Y, Yuan X, Liu Q, Hrymak A (2012) The effect of polymeric chain extenders on physical properties of thermoplastic starch and polylactic acid blends. J Polym Environ 20:315–325. https://doi.org/10.1007/s10924-011-0368-3Iannace S, Sorrentino L, Di Maio E (2014) Biodegradable biomedical foam scaffolds. Biomedical foams for tissue engineering applications. Elsevier, New York, pp 163–187Hottle TA, Bilec MM, Landis AE (2013) Sustainability assessments of bio-based polymers. Polym Degrad Stab 98:1898–1907Castro-Aguirre E, Iñiguez-Franco F, Samsudin H et al (2016) Poly(lactic acid)—Mass production, processing, industrial applications, and end of life. Adv Drug Deliv Rev 107:333–366Kaseem M, Hamad K, Deri F (2012) Thermoplastic starch blends: A review of recent works. Polym Sci - Ser A 54:165–176. https://doi.org/10.1134/S0965545X1202006XAbdal-Hay A, Sheikh FA, Lim JK (2013) Air jet spinning of hydroxyapatite/poly(lactic acid) hybrid nanocomposite membrane mats for bone tissue engineering. Colloids Surfaces B Biointerfaces 102:635–643. https://doi.org/10.1016/j.colsurfb.2012.09.017Plackett D, VÁzquez A, (2004) Natural polymer sources. Green composites: polymer composites and the environment. Elsevier, New York, pp 123–153Loureiro NC, Esteves JL (2018) Green composites in automotive interior parts: a solution using cellulosic fibers. Green composites for automotive applications. Elsevier, New York, pp 81–97Madhavan Nampoothiri K, Nair NR, John RP (2010) An overview of the recent developments in polylactide (PLA) research. Bioresour Technol 101:8493–8501. https://doi.org/10.1016/j.biortech.2010.05.092Koh JJ, Zhang X, He C (2018) Fully biodegradable Poly(lactic acid)/Starch blends: A review of toughening strategies. Int J Biol Macromol 109:99–113. https://doi.org/10.1016/j.ijbiomac.2017.12.048Tyler B, Gullotti D, Mangraviti A et al (2016) Polylactic acid (PLA) controlled delivery carriers for biomedical applications. Adv Drug Deliv Rev 107:163–175. https://doi.org/10.1016/j.addr.2016.06.018Hamad K, Kaseem M, Ayyoob M et al (2018) Polylactic acid blends: The future of green, light and tough. Prog Polym Sci 85:83–127. https://doi.org/10.1016/j.progpolymsci.2018.07.001Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macromol Biosci 4:835–864Huda MS, Drzal LT, Mohanty AK, Misra M (2007) The effect of silane treated- and untreated-talc on the mechanical and physico-mechanical properties of poly (lactic acid)/ newspaper fibers / talc hybrid composites. Compos Part B 38:367–379. https://doi.org/10.1016/j.compositesb.2006.06.010Yussuf AA, Massoumi I, Hassan A (2010) Comparison of polylactic Acid/Kenaf and polylactic Acid/Rise husk composites: The influence of the natural fibers on the mechanical, thermal and biodegradability properties. J Polym Environ 18:422–429. https://doi.org/10.1007/s10924-010-0185-0Yu L, Dean K, Li L (2006) Polymer blends and composites from renewable resources. Prog Polym Sci 31:576–602Ferri JM, Garcia-Garcia D, Sánchez-Nacher L et al (2016) The effect of maleinized linseed oil (MLO) on mechanical performance of poly(lactic acid)-thermoplastic starch (PLA-TPS) blends. Carbohydr Polym 147:60–68. https://doi.org/10.1016/j.carbpol.2016.03.082Müller P, Bere J, Fekete E et al (2016) Interactions, structure and properties in PLA/plasticized starch blends. Polymer 103:9–18. https://doi.org/10.1016/j.polymer.2016.09.031Carmona VB, De Campos A, Marconcini JM, Mattoso LHC (2014) Kinetics of thermal degradation applied to biocomposites with TPS, PCL and sisal fibers by non-isothermal procedures. J Therm Anal Calorim 115:153–160. https://doi.org/10.1007/s10973-013-3259-0Florez JP, Fazeli M, Simão RA (2019) Preparation and characterization of thermoplastic starch composite reinforced by plasma-treated poly (hydroxybutyrate) PHB. Int J Biol Macromol 123:609–621. https://doi.org/10.1016/j.ijbiomac.2018.11.070Jian J, Xiangbin Z, Xianbo H (2020) An overview on synthesis, properties and applications of poly(butylene-adipate-co-terephthalate)–PBAT. Adv Ind Eng Polym Res 3:19–26. https://doi.org/10.1016/j.aiepr.2020.01.001Zeng JB, Jiao L, Li YD et al (2011) Bio-based blends of starch and poly(butylene succinate) with improved miscibility, mechanical properties, and reduced water absorption. Carbohydr Polym 83:762–768. https://doi.org/10.1016/j.carbpol.2010.08.051Park JW, Im SS, Kim SH, Kim YH (2000) Biodegradable polymer blends of poly(L-lactic acid) and gelatinized starch. Polym Eng Sci 40:2539–2550. https://doi.org/10.1002/pen.11384Ke T, Sun X (2001) Effects of moisture content and heat treatment on the physical properties of starch and poly(lactic acid) blends. J Appl Polym Sci 81:3069–3082. https://doi.org/10.1002/app.1758Ke T, Sun SX, Seib P (2003) Blending of poly(lactic acid) and starches containing varying amylose content. J Appl Polym Sci 89:3639–3646. https://doi.org/10.1002/app.12617Shin BY, Jo GS, Kang KS et al (2007) Morphology and rheology on the blends of PLA/CMPS. Macromol Res 15:291–301. https://doi.org/10.1007/BF03218790Wang N, Yu J, Chang PR, Ma X (2008) Influence of formamide and water on the properties of thermoplastic starch/poly(lactic acid) blends. Carbohydr Polym 71:109–118. https://doi.org/10.1016/j.carbpol.2007.05.025Wang N, Yu J, Ma X (2008) Preparation and characterization of compatible thermoplastic dry starch/poly(lactic acid). Polym Compos 29:551–559. https://doi.org/10.1002/pc.20399Li H, Huneault MA (2011) Comparison of sorbitol and glycerol as plasticizers for thermoplastic starch in TPS/PLA blends. J Appl Polym Sci 119:2439–2448. https://doi.org/10.1002/app.32956Shirai MA, Müller CMO, Grossmann MVE, Yamashita F (2015) Adipate and Citrate Esters as Plasticizers for Poly(Lactic Acid)/Thermoplastic Starch Sheets. J Polym Environ 23:54–61. https://doi.org/10.1007/s10924-014-0680-9Ferrarezi MMF, de Oliveira Taipina M, da Silva LCE, Gonçalves, M do C (2013) Poly(Ethylene Glycol) as a Compatibilizer for Poly(Lactic Acid)/Thermoplastic Starch Blends. J Polym Environ 21:151–159. https://doi.org/10.1007/s10924-012-0480-zAverous L, Moro L, Dole P, Fringant C (2000) Properties of thermoplastic blends: Starch-polycaprolactone. Polymer 41:4157–4167. https://doi.org/10.1016/S0032-3861(99)00636-9Debiagi F, Mello LRPF, Mali S (2017) Thermoplastic starch-based blends: processing, structural, and final properties. Starch-based materials in food packaging: processing. Characterization and Applications. Elsevier, New York, pp 153–186Huneault MA, Li H (2007) Morphology and properties of compatibilized polylactide/thermoplastic starch blends. Polymer 48:270–280. https://doi.org/10.1016/j.polymer.2006.11.023Akrami M, Ghasemi I, Azizi H et al (2016) A new approach in compatibilization of the poly(lactic acid)/thermoplastic starch (PLA/TPS) blends. Carbohydr Polym 144:254–262. https://doi.org/10.1016/j.carbpol.2016.02.035Wu C-S (2005) Improving Polylactide/Starch Biocomposites by Grafting Polylactide with Acrylic Acid - Characterization and Biodegradability Assessment. Macromol Biosci 5:352–361. https://doi.org/10.1002/mabi.200400159Schwach E, Six JL, Avérous L (2008) Biodegradable blends based on starch and poly(lactic acid): Comparison of different strategies and estimate of compatibilization. J Polym Environ 16:286–297. https://doi.org/10.1007/s10924-008-0107-6Liu J, Jiang H, Chen L (2012) Grafting of Glycidyl Methacrylate onto Poly(lactide) and Properties of PLA/Starch Blends Compatibilized by the Grafted Copolymer. J Polym Environ 20:810–816. https://doi.org/10.1007/s10924-012-0438-1Shi Q, Chen C, Gao L et al (2011) Physical and degradation properties of binary or ternary blends composed of poly (lactic acid), thermoplastic starch and GMA grafted POE. Polym Degrad Stab 96:175–182. https://doi.org/10.1016/j.polymdegradstab.2010.10.002Yang X, Finne-Wistrand A, Hakkarainen M (2013) Improved dispersion of grafted starch granules leads to lower water resistance for starch-g-PLA/PLA composites. Compos Sci Technol 86:149–156. https://doi.org/10.1016/j.compscitech.2013.07.013Cuevas-Carballo ZB, Duarte-Aranda S, Canché-Escamilla G (2019) Properties and Biodegradation of Thermoplastic Starch Obtained from Grafted Starches with Poly(lactic acid). J Polym Environ 27:2607–2617. https://doi.org/10.1007/s10924-019-01540-wNoivoil N, Yoksan R (2020) Oligo(lactic acid)-grafted starch: A compatibilizer for poly(lactic acid)/thermoplastic starch blend. Int J Biol Macromol 160:506–517. https://doi.org/10.1016/j.ijbiomac.2020.05.178Karagoz S, Ozkoc G (2013) Effects of a diisocyanate compatibilizer on the properties of citric acid modified thermoplastic starch/poly(lactic acid) blends. Polym Eng Sci 53:23478. https://doi.org/10.1002/pen.23478Ke T, Sun XS (2003) Thermal and mechanical properties of poly(lactic acid)/starch/methylenediphenyl diisocyanate blending with triethyl citrate. J Appl Polym Sci 88:2947–2955. https://doi.org/10.1002/app.12112Sarazin P, Li G, Orts WJ, Favis BD (2008) Binary and ternary blends of polylactide, polycaprolactone and thermoplastic starch. Polymer 49:599–609. https://doi.org/10.1016/j.polymer.2007.11.029Carmona VB, Corrêa AC, Marconcini JM, Mattoso LHC (2015) Properties of a Biodegradable Ternary Blend of Thermoplastic Starch (TPS), Poly(ε-Caprolactone) (PCL) and Poly(Lactic Acid) (PLA). J Polym Environ 23:83–89. https://doi.org/10.1007/s10924-014-0666-7Bulatović VO, Mandić V, Kučić Grgić D, Ivančić A (2021) Biodegradable Polymer Blends Based on Thermoplastic Starch. J Polym Environ 29:492–508. https://doi.org/10.1007/s10924-020-01874-wRen J, Fu H, Ren T, Yuan W (2009) Preparation, characterization and properties of binary and ternary blends with thermoplastic starch, poly(lactic acid) and poly(butylene adipate-co-terephthalate). Carbohydr Polym 77:576–582. https://doi.org/10.1016/j.carbpol.2009.01.024Ma P, Hristova-Bogaerds DG, Schmit P et al (2012) Tailoring the morphology and properties of poly(lactic acid)/poly(ethylene)- co -(vinyl acetate)/starch blends via reactive compatibilization. Polym Int 61:1284–1293. https://doi.org/10.1002/pi.4204Yang Y, Tang Z, Xiong Z, Zhu J (2015) Preparation and characterization of thermoplastic starches and their blends with poly(lactic acid). Int J Biol Macromol 77:273–279. https://doi.org/10.1016/j.ijbiomac.2015.03.053Noivoil N, Yoksan R (2021) Compatibility improvement of poly(lactic acid)/thermoplastic starch blown films using acetylated starch. J Appl Polym Sci 138:49675. https://doi.org/10.1002/app.49675Przybytek A, Sienkiewicz M, Kucińska-Lipka J, Janik H (2018) Preparation and characterization of biodegradable and compostable PLA/TPS/ESO compositions. Ind Crops Prod 122:375–383. https://doi.org/10.1016/j.indcrop.2018.06.016Xiong Z, Yang Y, Feng J et al (2013) Preparation and characterization of poly(lactic acid)/starch composites toughened with epoxidized soybean oil. Carbohydr Polym 92:810–816. https://doi.org/10.1016/j.carbpol.2012.09.007Turco R, Ortega-Toro R, Tesser R et al (2019) Poly (Lactic Acid)/Thermoplastic Starch Films: Effect of Cardoon Seed Epoxidized Oil on Their Chemicophysical, Mechanical, and Barrier Properties. Coatings 9:574. https://doi.org/10.3390/coatings9090574Wang N, Yu J, Chang PR, Ma X (2007) Influence of citric acid on the properties of glycerol-plasticized dry starch (DTPS) and DTPS/poly(lactic acid) blends. Starch/Staerke 59:409–417. https://doi.org/10.1002/star.200700617Yokesahachart C, Yoksan R (2011) Effect of amphiphilic molecules on characteristics and tensile properties of thermoplastic starch and its blends with poly(lactic acid). Carbohydr Polym 83:22–31. https://doi.org/10.1016/j.carbpol.2010.07.020Teixeira E, de M, Curvelo, Corrêa AAS AC, et al (2012) Properties of thermoplastic starch from cassava bagasse and cassava starch and their blends with poly (lactic acid). Ind Crops Prod 37:61–68. https://doi.org/10.1016/j.indcrop.2011.11.036Chand N, Fahim M (2021) Natural fibers and their composites. In: Tribology of natural fiber polymer composites. Elsevier, pp 1–59Salit MS (2014) Tropical Natural Fibre Composites. Springer Singapore, SingaporeBocz K, Szolnoki B, Marosi A et al (2013) Flax fibre reinforced PLA/TPS biocomposites flame retarded with multifunctional additive system. Polym Degrad Stab. https://doi.org/10.1016/j.polymdegradstab.2013.10.025Smitthipong W, Tantatherdtam R, Chollakup R (2015) Effect of pineapple leaf fiber-reinforced thermoplastic starch/poly(lactic acid) green composite. J Thermoplast Compos Mater 28:717–729. https://doi.org/10.1177/0892705713489701Iovino R, Zullo R, Rao MA et al (2008) Biodegradation of poly(lactic acid)/starch/coir biocomposites under controlled composting conditions. Polym Degrad Stab 93:147–157. https://doi.org/10.1016/j.polymdegradstab.2007.10.011Surin P, Rakkwamsuk P, Wimolmala E, Sombatsompop N (2015) Effects of Coir Fiber and Maleic Anhydride Modification on the Properties of Thermoplastic Starch/PLA Composite Laminates. J Nat Fibers 12:108–120. https://doi.org/10.1080/15440478.2014.901203De Macedo JRN, Dos Santos Rosa D (2016) Effect of fiber and starch incorporation in biodegradation of PLA-TPS Cotton composites. Key Eng Mater 668:54–62. https://doi.org/10.4028/www.scientific.net/KEM.668.54Kale NR, Raj A A, et al (2018) Mechanical and thermal properties of wood fibers reinforced poly(lactic acid)/thermoplasticized starch composites. J Appl Polym Sci 135:46118. https://doi.org/10.1002/app.46118Collazo-Bigliardi S, Ortega-Toro R, Chiralt A (2019) Using lignocellulosic fractions of coffee husk to improve properties of compatibilised starch-PLA blend films. Food Packag Shelf Life 22:100423. https://doi.org/10.1016/j.fpsl.2019.100423Jullanun P, Yoksan R (2020) Morphological characteristics and properties of TPS/PLA/cassava pulp biocomposites. Polym Test 88:. https://doi.org/10.1016/j.polymertesting.2020.106522Yu L, Liu X, Petinakis E et al (2013) Starch based blends, composites and nanocomposites. Adv Struct Mater 18:121–154. https://doi.org/10.1007/978-3-642-20940-6_4Liao H-T, Wu C-S (2008) New biodegradable blends prepared from polylactide, titanium tetraisopropylate, and starch. J Appl Polym Sci 108:2280–2289. https://doi.org/10.1002/app.27901Arroyo OH, Huneault MA, Favis BD, Bureau MN (2010) Processing and properties of PLA/thermoplastic starch/montmorillonite nanocomposites. Polym Compos 31:114–127. https://doi.org/10.1002/pc.20774Ayana B, Suin S, Khatua BB (2014) Highly exfoliated eco-friendly thermoplastic starch (TPS)/poly (lactic acid)(PLA)/clay nanocomposites using unmodified nanoclay. Carbohydr Polym 110:430–439. https://doi.org/10.1016/j.carbpol.2014.04.024Ferreira WH, Carmo MMIB, Silva ALN, Andrade CT (2015) Effect of structure and viscosity of the components on some properties of starch-rich hybrid blends. Carbohydr Polym 117:988–995. https://doi.org/10.1016/j.carbpol.2014.10.018Shayan M, Azizi H, Ghasemi I, Karrabi M (2015) Effect of modified starch and nanoclay particles on biodegradability and mechanical properties of cross-linked poly lactic acid. Carbohydr Polym 124:237–244. https://doi.org/10.1016/j.carbpol.2015.02.001Shayan M, Azizi H, Ghasemi I, Karrabi M (2019) Influence of modified starch and nanoclay particles on crystallization and thermal degradation properties of cross-linked poly(lactic acid). J Polym Res 26:1–12. https://doi.org/10.1007/s10965-019-1879-1Paglicawan MA, Basilia BA, Navarro MTV, Emolaga CS (2013) Influence of nanoclay on the properties of thermoplastic starch/poly(lactic acid) blends. J Biobased Mater Bioenergy 7:102–107. https://doi.org/10.1166/jbmb.2013.1276Ebrahimi H, Najafi FSA, Shahabadi SIS, Garmabi H (2016) A response surface study on microstructure and mechanical properties of poly(lactic acid)/thermoplastic starch/nanoclay nanocomposites. J Compos Mater 50:269–278. https://doi.org/10.1177/0021998315573560Jeziorska R, Szadkowska A, Spasowka E et al (2018) Characteristics of biodegradable polylactide/thermoplastic starch/nanosilica composites: effects of plasticizer and nanosilica functionality. Adv Mater Sci Eng 2018. https://doi.org/10.1155/2018/4571368Solati M, Saeidi A, Ghasemi I (2019) The effect of graphene nanoplatelets on dynamic properties, crystallization, and morphology of a biodegradable blend of poly(lactic acid)/thermoplastic starch. Iran Polym J (English Ed 28:649–658. https://doi.org/10.1007/s13726-019-00731-5Nazrin A, Sapuan SM, Zuhri MYM (2020) Mechanical, physical and thermal properties of sugar palm nanocellulose reinforced thermoplastic starch (TPS)/Poly (lactic acid) (PLA) blend bionanocomposites. Polymers (Basel) 12:2216. https://doi.org/10.3390/polym12102216Othman MH (2020) Polymer blends and composites from renewable resources. In: Encyclopedia of renewable and sustainable materials. Elsevier, pp 179–186Castillo C, Nesic A, Urra N, Maldonado A (2019) Influence of thermoplasticized starch on physical-chemical properties of new biodegradable carriers intended for forest industry. Int J Biol Macromol 122:924–929. https://doi.org/10.1016/j.ijbiomac.2018.11.026Rydz J, Sikorska W, Musioł M et al (2020) Sustainable future alternative: (Bio)degradable polymers for the environment. In: Choudhury I, Hashmi S (eds) Encyclopedia of renewable and sustainable materials. Elsevier, New York, pp 274–284Dorigato A (2021) Recycling of polymer blends. Adv Ind Eng Polym Res 4:53–69. https://doi.org/10.1016/j.aiepr.2021.02.005Shanmugam V, Mensah RA, Försth M et al (2021) Circular economy in biocomposite development: State-of-the-art, challenges and emerging trends. Compos Part C Open Access 5:100138. https://doi.org/10.1016/j.jcomc.2021.100138Gürler N, Paşa S, Hakkı Alma M, Temel H (2020) The fabrication of bilayer polylactic acid films from cross-linked starch as eco-friendly biodegradable materials: synthesis, characterization, mechanical and physical properties. Eur Polym J 127:109588. https://doi.org/10.1016/j.eurpolymj.2020.109588Clasen SH, Müller CMO, Pires ATN (2015) Maleic anhydride as a compatibilizer and plasticizer in TPS/PLA blends. J Braz Chem Soc 26:1583–1590. https://doi.org/10.5935/0103-5053.20150126Palai B, Biswal M, Mohanty S, Nayak SK (2019) In situ reactive compatibilization of polylactic acid (PLA) and thermoplastic starch (TPS) blends; synthesis and evaluation of extrusion blown films thereof. Ind Crops Prod 141:111748. https://doi.org/10.1016/j.indcrop.2019.111748Wootthikanokkhan J, Kasemwananimit P, Sombatsompop N et al (2012) Preparation of modified starch-grafted poly(lactic acid) and a study on compatibilizing efficacy of the copolymers in poly(lactic acid)/thermoplastic starch blends. J Appl Polym Sci 126:E389–E396. https://doi.org/10.1002/app.36896Imre B, Pukánszky B (2013) Compatibilization in bio-based and biodegradable polymer blends. In: European Polymer Journal. Pergamon, pp 1215–1233Gómez-Contreras P, Contreras-Camacho M, Avalos-Belmontes F et al (2021) Physicochemical properties of composite materials based on thermoplastic yam starch and polylactic acid improved with the addition of epoxidized sesame oil. J Polym Environ. https://doi.org/10.1007/s10924-021-02119-0Ortega-Toro R, López-Córdoba A, Avalos-Belmontes F (2021) Epoxidised sesame oil as a biobased coupling agent and plasticiser in polylactic acid/thermoplastic yam starch blends. Heliyon 7:e06176. https://doi.org/10.1016/j.heliyon.2021.e06176Nasseri R, Ngunjiri R, Moresoli C et al (2020) Poly(lactic acid)/acetylated starch blends: effect of starch acetylation on the material properties. Carbohydr Polym 229:115453. https://doi.org/10.1016/j.carbpol.2019.115453Ramanjaneyulu B, Venkatachalapathi N, Prasanthi G (2019) Testing and characterization of binary and ternary blends with poly (lactic acid), acrylonitrile-butadiene-styrene and tapioca cassava starch powder. In: Materials Today: Proceedings. Elsevier Ltd, pp 2183–2186http://purl.org/coar/resource_type/c_2df8fbb1ORIGINALPAPER MARY JUDITH ARIAS - Article_Thermoplast_Mary Judith Arias Ta.pdfPAPER MARY JUDITH ARIAS - Article_Thermoplast_Mary Judith Arias Ta.pdfArtículoapplication/pdf1288586https://repositorio.utb.edu.co/bitstream/20.500.12585/10324/1/PAPER%20MARY%20JUDITH%20ARIAS%20-%20Article_Thermoplast_Mary%20Judith%20Arias%20Ta.pdf32a27f50a20b2923c824523012716cddMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.utb.edu.co/bitstream/20.500.12585/10324/2/license_rdf24013099e9e6abb1575dc6ce0855efd5MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/10324/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTPAPER MARY JUDITH ARIAS - Article_Thermoplast_Mary Judith Arias Ta.pdf.txtPAPER MARY JUDITH ARIAS - Article_Thermoplast_Mary Judith Arias Ta.pdf.txtExtracted texttext/plain81026https://repositorio.utb.edu.co/bitstream/20.500.12585/10324/4/PAPER%20MARY%20JUDITH%20ARIAS%20-%20Article_Thermoplast_Mary%20Judith%20Arias%20Ta.pdf.txt1c5501e36d437723a0cae28d745ee7feMD54THUMBNAILPAPER MARY JUDITH ARIAS - Article_Thermoplast_Mary Judith Arias Ta.pdf.jpgPAPER MARY JUDITH ARIAS - Article_Thermoplast_Mary Judith Arias Ta.pdf.jpgGenerated Thumbnailimage/jpeg98176https://repositorio.utb.edu.co/bitstream/20.500.12585/10324/5/PAPER%20MARY%20JUDITH%20ARIAS%20-%20Article_Thermoplast_Mary%20Judith%20Arias%20Ta.pdf.jpga6fe3a22580d88274f36dd6cd9ae401fMD5520.500.12585/10324oai:repositorio.utb.edu.co:20.500.12585/103242023-04-24 09:19:41.198Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo= |