Application of the Multiverse Optimization Method to Solve the Optimal Power Flow Problem in Alternating Current Networks

In this paper, we solve the optimal power flow problem in alternating current networks to reduce power losses. For that purpose, we propose a master–slave methodology that combines the multiverse optimization algorithm (master stage) and the power flow method for alternating current networks based o...

Full description

Autores:
Rosales Muñoz, Andrés Alfonso
Grisales-Noreña, Luis Fernando
Montano, Jhon
Montoya, Oscar Danilo
Perea-Moreno, Alberto-Jesus
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12277
Acceso en línea:
https://hdl.handle.net/20.500.12585/12277
https://doi.org/10.3390/electronics11081287
Palabra clave:
Optimal Power Flow;
Reactive Power;
Particle Swarm Optimization
LEMB
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_ab4af1d9ef20b3fdbac31faf27c7bc02
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12277
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Application of the Multiverse Optimization Method to Solve the Optimal Power Flow Problem in Alternating Current Networks
title Application of the Multiverse Optimization Method to Solve the Optimal Power Flow Problem in Alternating Current Networks
spellingShingle Application of the Multiverse Optimization Method to Solve the Optimal Power Flow Problem in Alternating Current Networks
Optimal Power Flow;
Reactive Power;
Particle Swarm Optimization
LEMB
title_short Application of the Multiverse Optimization Method to Solve the Optimal Power Flow Problem in Alternating Current Networks
title_full Application of the Multiverse Optimization Method to Solve the Optimal Power Flow Problem in Alternating Current Networks
title_fullStr Application of the Multiverse Optimization Method to Solve the Optimal Power Flow Problem in Alternating Current Networks
title_full_unstemmed Application of the Multiverse Optimization Method to Solve the Optimal Power Flow Problem in Alternating Current Networks
title_sort Application of the Multiverse Optimization Method to Solve the Optimal Power Flow Problem in Alternating Current Networks
dc.creator.fl_str_mv Rosales Muñoz, Andrés Alfonso
Grisales-Noreña, Luis Fernando
Montano, Jhon
Montoya, Oscar Danilo
Perea-Moreno, Alberto-Jesus
dc.contributor.author.none.fl_str_mv Rosales Muñoz, Andrés Alfonso
Grisales-Noreña, Luis Fernando
Montano, Jhon
Montoya, Oscar Danilo
Perea-Moreno, Alberto-Jesus
dc.subject.keywords.spa.fl_str_mv Optimal Power Flow;
Reactive Power;
Particle Swarm Optimization
topic Optimal Power Flow;
Reactive Power;
Particle Swarm Optimization
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description In this paper, we solve the optimal power flow problem in alternating current networks to reduce power losses. For that purpose, we propose a master–slave methodology that combines the multiverse optimization algorithm (master stage) and the power flow method for alternating current networks based on successive approximation (slave stage). The master stage determines the level of active power to be injected by each distributed generator in the network, and the slave stage evaluates the impact of the proposed solution on each distributed generator in terms of the objective function and the constraints. For the simulations, we used the 10-, 33-, and 69-node radial test systems and the 10-node mesh test system with three levels of distributed generation penetration: 20%, 40%, and 60% of the power provided by the slack generator in a scenario without DGs. In order to validate the robustness and convergence of the proposed optimization algorithm, we compared it with four other optimization methods that have been reported in the specialized literature to solve the problem addressed here: Particle Swarm Optimization, the Continuous Genetic Algorithm, the Black Hole Optimization algorithm, and the Ant Lion Optimization algorithm. The results obtained demonstrate that the proposed master–slave methodology can find the best solution (in terms of power loss reduction, repeatability, and technical conditions) for networks of any size while offering excellent performance in terms of computation time. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.
publishDate 2022
dc.date.issued.none.fl_str_mv 2022
dc.date.accessioned.none.fl_str_mv 2023-07-21T15:43:24Z
dc.date.available.none.fl_str_mv 2023-07-21T15:43:24Z
dc.date.submitted.none.fl_str_mv 2023
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
status_str draft
dc.identifier.citation.spa.fl_str_mv Rosales Muñoz, A.A.; Grisales-Noreña, L.F.; Montano, J.; Montoya, O.D.; Perea-Moreno, A.-J. Application of the Multiverse Optimization Method to Solve the Optimal Power Flow Problem in Alternating Current Networks. Electronics 2022, 11, 1287. https://doi.org/10.3390/electronics11081287
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12277
dc.identifier.doi.none.fl_str_mv https://doi.org/10.3390/electronics11081287
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Rosales Muñoz, A.A.; Grisales-Noreña, L.F.; Montano, J.; Montoya, O.D.; Perea-Moreno, A.-J. Application of the Multiverse Optimization Method to Solve the Optimal Power Flow Problem in Alternating Current Networks. Electronics 2022, 11, 1287. https://doi.org/10.3390/electronics11081287
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12277
https://doi.org/10.3390/electronics11081287
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 33 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv Electronics Volume 11, Issue 8
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12277/1/electronics-11-01287-v2.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12277/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12277/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12277/4/electronics-11-01287-v2.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12277/5/electronics-11-01287-v2.pdf.jpg
bitstream.checksum.fl_str_mv 260b0788a99caca1e92a21a339701408
4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
9fdf3cbcaf46302d847f1c5899a06fab
a6ef9166b97c8dc8d56869b45b8d1340
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021679146336256
spelling Rosales Muñoz, Andrés Alfonso1cadd052-2b2e-4872-b1d3-7679f6be5f2aGrisales-Noreña, Luis Fernando7c27cda4-5fe4-4686-8f72-b0442c58a5d1Montano, Jhon5edc0c05-f7f1-4a81-8b30-3981975c221dMontoya, Oscar Danilo9fa8a75a-58fa-436d-a6e2-d80f718a4ea8Perea-Moreno, Alberto-Jesuse78da438-8ed5-40ab-a12c-74e84e6d691b2023-07-21T15:43:24Z2023-07-21T15:43:24Z20222023Rosales Muñoz, A.A.; Grisales-Noreña, L.F.; Montano, J.; Montoya, O.D.; Perea-Moreno, A.-J. Application of the Multiverse Optimization Method to Solve the Optimal Power Flow Problem in Alternating Current Networks. Electronics 2022, 11, 1287. https://doi.org/10.3390/electronics11081287https://hdl.handle.net/20.500.12585/12277https://doi.org/10.3390/electronics11081287Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarIn this paper, we solve the optimal power flow problem in alternating current networks to reduce power losses. For that purpose, we propose a master–slave methodology that combines the multiverse optimization algorithm (master stage) and the power flow method for alternating current networks based on successive approximation (slave stage). The master stage determines the level of active power to be injected by each distributed generator in the network, and the slave stage evaluates the impact of the proposed solution on each distributed generator in terms of the objective function and the constraints. For the simulations, we used the 10-, 33-, and 69-node radial test systems and the 10-node mesh test system with three levels of distributed generation penetration: 20%, 40%, and 60% of the power provided by the slack generator in a scenario without DGs. In order to validate the robustness and convergence of the proposed optimization algorithm, we compared it with four other optimization methods that have been reported in the specialized literature to solve the problem addressed here: Particle Swarm Optimization, the Continuous Genetic Algorithm, the Black Hole Optimization algorithm, and the Ant Lion Optimization algorithm. The results obtained demonstrate that the proposed master–slave methodology can find the best solution (in terms of power loss reduction, repeatability, and technical conditions) for networks of any size while offering excellent performance in terms of computation time. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.33 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Electronics Volume 11, Issue 8Application of the Multiverse Optimization Method to Solve the Optimal Power Flow Problem in Alternating Current Networksinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Optimal Power Flow;Reactive Power;Particle Swarm OptimizationLEMBCartagena de IndiasGurven, M., Walker, R. Energetic demand of multiple dependents and the evolution of slow human growth (2006) Proceedings of the Royal Society B: Biological Sciences, 273 (1588), pp. 835-841. Cited 119 times. http://rspb.royalsocietypublishing.org/ doi: 10.1098/rspb.2005.3380Murillo, J., Trejos, A., OLAYA, P.C. Estudio del pronóstico de la demanda de energía eléctrica, utilizando modelos de series de tiempo (2003) Sci. Tech, 3, pp. 1-6. Cited 7 times. https://doi.org/10.22517/23447214.7379Reiss, P.C., White, M.W. Household electricity demand, revisited (2005) Review of Economic Studies, 72 (3), pp. 853-883. Cited 336 times. doi: 10.1111/0034-6527.00354Halvorsen, R. Demand for electric energy in the United States (1976) South. Econ. J, 42, pp. 610-625. Cited 31 times.Bull, S.R. Renewable energy today and tomorrow (2001) Proceedings of the IEEE, 89 (8), pp. 1216-1226. Cited 469 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5 doi: 10.1109/5.940290Machol, B., Rizk, S. Economic value of U.S. fossil fuel electricity health impacts (2013) Environment International, 52, pp. 75-80. Cited 90 times. www.elsevier.com/locate/envint doi: 10.1016/j.envint.2012.03.003Zhang, N., Zhou, P., Choi, Y. Energy efficiency, CO2 emission performance and technology gaps in fossil fuel electricity generation in Korea: A meta-frontier non-radial directional distance functionanalysis (2013) Energy Policy, 56, pp. 653-662. Cited 276 times. doi: 10.1016/j.enpol.2013.01.033Muñoz, A.A.R., Grisales-Noreña, L.F., Montano, J., Montoya, O.D., Giral-Ramírez, D.A. Optimal power dispatch of distributed generators in direct current networks using a master–slave methodology that combines the salp swarm algorithm and the successive approximation method (2021) Electronics (Switzerland), 10 (22), art. no. 2837. Cited 6 times. https://www.mdpi.com/2079-9292/10/22/2837/pdf doi: 10.3390/electronics10222837Rosales-Muñoz, A.A., Grisales-Noreña, L.F., Montano, J., Montoya, O.D., Perea-Moreno, A.-J. Application of the multiverse optimization method to solve the optimal power flow problem in direct current electrical networks (2021) Sustainability (Switzerland), 13 (16), art. no. 8703. Cited 11 times. https://www.mdpi.com/2071-1050/13/16/8703/pdf doi: 10.3390/su13168703Grisales-Noreña, L.F., Montoya, D.G., Ramos-Paja, C.A. Optimal sizing and location of distributed generators based on PBIL and PSO techniques (2018) Energies, 11 (4), art. no. en11041018. Cited 98 times. http://www.mdpi.com/journal/energies/ doi: 10.3390/en11041018Grisales, L.F., Restrepo Cuestas, B.J. Ubicación y dimensionamiento de generación distribuida: Una revisión (2017) Cienc. Ing. Neogranadina, 27, pp. 157-176. Cited 15 times.Grisales-Noreña, L.F., Ramos-Paja, C.A., Gonzalez-Montoya, D., Alcalá, G., Hernandez-Escobedo, Q. Energy management in PV based microgrids designed for the Universidad Nacional de Colombia (2020) Sustainability (Switzerland), 12 (3), art. no. 1219. Cited 17 times. https://res.mdpi.com/d_attachment/sustainability/sustainability-12-01219/article_deploy/sustainability-12-01219-v2.pdf doi: 10.3390/su12031219Franck, C.M. HVDC circuit breakers: A review identifying future research needs (2011) IEEE Transactions on Power Delivery, 26 (2), art. no. 5686894, pp. 998-1007. Cited 899 times. doi: 10.1109/TPWRD.2010.2095889Ocampo-Toro, J.A., Garzon-Rivera, O.D., Grisales-Noreña, L.F., Montoya-Giraldo, O.D., Gil-González, W. Optimal Power Dispatch in Direct Current Networks to Reduce Energy Production Costs and CO 2 Emissions Using the Antlion Optimization Algorithm (2021) Arabian Journal for Science and Engineering, 46 (10), pp. 9995-10006. Cited 4 times. https://link.springer.com/journal/13369 doi: 10.1007/s13369-021-05831-0Grisales, L.F., Grajales, A., Montoya, O.D., Hincapie, R.A., Granada, M., Castro, C.A. Optimal location, sizing and operation of energy storage in distribution systems using multi-objective approach (2017) IEEE Latin America Transactions, 15 (6), art. no. 7932696, pp. 1084-1090. Cited 24 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=9907 doi: 10.1109/TLA.2017.7932696Montoya, O.D., Grisales-Noreña, L.F., González-Montoya, D., Ramos-Paja, C.A., Garces, A. Linear power flow formulation for low-voltage DC power grids (2018) Electric Power Systems Research, Part A 163, pp. 375-381. Cited 79 times. doi: 10.1016/j.epsr.2018.07.003Dommel, H.W., Tinney, W.F. Optimal Power Flow Solutions (Open Access) (1968) IEEE Transactions on Power Apparatus and Systems, PAS-87 (10), pp. 1866-1876. Cited 1270 times. doi: 10.1109/TPAS.1968.292150Alsac, O., Stott, B. Optimal load flow with steady-state security (Open Access) (1974) IEEE Transactions on Power Apparatus and Systems, PAS-93 (3), pp. 745-751. Cited 642 times. doi: 10.1109/TPAS.1974.293972Ali, E.S., Abd Elazim, S.M., Abdelaziz, A.Y. Ant Lion Optimization Algorithm for renewable Distributed Generations (2016) Energy, Part 1 116, pp. 445-458. Cited 213 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2016.09.104Montoya, O.D., Molina-Cabrera, A., Chamorro, H.R., Alvarado-Barrios, L., Rivas-Trujillo, E. A hybrid approach based on socp and the discrete version of the sca for optimal placement and sizing dgs in ac distribution networks (Open Access) (2021) Electronics (Switzerland), 10 (1), art. no. 26, pp. 1-19. Cited 12 times. https://www.mdpi.com/2079-9292/10/1/26/pdf doi: 10.3390/electronics10010026Bernal-Romero, D.L., Montoya, O.D., Arias-Londoño, A. Solution of the optimal reactive power flow problem using a discrete-continuous cbga implemented in the digsilent programming language (2021) Computers, 10 (11), art. no. 151. Cited 8 times. https://www.mdpi.com/2073-431X/10/11/151/pdf doi: 10.3390/computers10110151Lashkar Ara, A., Kazemi, A., Gahramani, S., Behshad, M. Optimal reactive power flow using multi-objective mathematical programming (Open Access) (2012) Scientia Iranica, 19 (6), pp. 1829-1836. Cited 48 times. scientiairanica.sharif.edu doi: 10.1016/j.scient.2012.07.010Bhattacharya, A., Chattopadhyay, P.K. Solution of optimal reactive power flow using biogeography-based optimization (2010) Int. J. Electr. Electron. Eng, 4, pp. 568-576. Cited 92 times.Ayan, K., Kiliç, U. Artificial bee colony algorithm solution for optimal reactive power flow (Open Access) (2012) Applied Soft Computing Journal, 12 (5), pp. 1477-1482. Cited 170 times. doi: 10.1016/j.asoc.2012.01.006Gutiérrez, D., Villa, W.M., López-Lezama, J.M. Optimal reactive power dispatch by means of particle swarm optimization (Open Access) (2017) Informacion Tecnologica, 28 (5), pp. 215-224. Cited 8 times. http://www.scielo.cl/pdf/infotec/v28n5/art20.pdf doi: 10.4067/S0718-07642017000500020Mahmoud, K., Yorino, N., Ahmed, A. Optimal Distributed Generation Allocation in Distribution Systems for Loss Minimization (2016) IEEE Transactions on Power Systems, 31 (2), art. no. 7091050, pp. 960-969. Cited 287 times. doi: 10.1109/TPWRS.2015.2418333Mosbah, M., Zine, R., Arif, S., Mohammedi, R.D., Bacha, S. Optimal Power Flow for Transmission System with Photovoltaic Based DG Using Biogeography-Based Optimization (2019) Proceedings of 2018 3rd International Conference on Electrical Sciences and Technologies in Maghreb, CISTEM 2018, art. no. 8613610. Cited 9 times. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8593337 ISBN: 978-153864987-9 doi: 10.1109/CISTEM.2018.8613610Montoya, O.D., Giral-Ramirez, D.A., Grisales-Norena, L.F. Black hole optimizer for the optimal power injection in distribution networks using DG (2021) Journal of Physics: Conference Series, 2135 (1), art. no. 012010. Cited 2 times. http://iopscience.iop.org/journal/1742-6596 doi: 10.1088/1742-6596/2135/1/012010Wang, P., Wang, W., Xu, D. Optimal sizing of distributed generations in DC microgrids with comprehensive consideration of system operation modes and operation targets (2018) IEEE Access, 6, pp. 31129-31140. Cited 52 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639 doi: 10.1109/ACCESS.2018.2842119Manrique, M.L., Montoya, O.D., Garrido, V.M., Grisales-Noreña, L.F., Gil-González, W. Sine-Cosine Algorithm for OPF Analysis in Distribution Systems to Size Distributed Generators (2019) Communications in Computer and Information Science, 1052, pp. 28-39. Cited 10 times. http://www.springer.com/series/7899 ISBN: 978-303031018-9 doi: 10.1007/978-3-030-31019-6_3Mirjalili, S., Mirjalili, S.M., Hatamlou, A. Multi-Verse Optimizer: a nature-inspired algorithm for global optimization (2016) Neural Computing and Applications, 27 (2), pp. 495-513. Cited 1634 times. http://link.springer.com/journal/521 doi: 10.1007/s00521-015-1870-7Trivedi, I.N., Jangir, P., Jangir, N., Parmar, S.A., Bhoye, M., Kumar, A. Voltage stability enhancement and voltage deviation minimization using multi-verse optimizer algorithm (2016) Proceedings of IEEE International Conference on Circuit, Power and Computing Technologies, ICCPCT 2016, art. no. 7530136. Cited 19 times. ISBN: 978-150901277-0 doi: 10.1109/ICCPCT.2016.7530136Ceylan, O. Multi-verse optimization algorithm- and salp swarm optimization algorithm-based optimization of multilevel inverters (Open Access) (2021) Neural Computing and Applications, 33 (6), pp. 1935-1950. Cited 7 times. http://link.springer.com/journal/521 doi: 10.1007/s00521-020-05062-8Kumar, A., Suhag, S. Multiverse optimized fuzzy-PID controller with a derivative filter for load frequency control of multisource hydrothermal power system (2017) Turkish Journal of Electrical Engineering and Computer Sciences, 25 (5), pp. 4187-4199. Cited 17 times. http://journals.tubitak.gov.tr/elektrik/issues/elk-17-25-5/elk-25-5-56-1612-176.pdf doi: 10.3906/elk-1612-176Sulaiman, M., Ahmad, S., Iqbal, J., Khan, A., Khan, R. Optimal operation of the hybrid electricity generation system using multiverse optimization algorithm (Open Access) (2019) Computational Intelligence and Neuroscience, 2019, art. no. 6192980. Cited 22 times. http://www.hindawi.com/journals/cin doi: 10.1155/2019/6192980Montoya, O.D., Garrido, V.M., Gil-Gonzalez, W., Grisales-Norena, L.F. Power Flow Analysis in DC Grids: Two Alternative Numerical Methods (2019) IEEE Transactions on Circuits and Systems II: Express Briefs, 66 (11), art. no. 8606244, pp. 1865-1869. Cited 59 times. http://www.ieee-cas.org doi: 10.1109/TCSII.2019.2891640Linde, A., Linde, D., Mezhlumian, A. From the big bang theory to the theory of a stationary universe (1994) Physical Review D, 49 (4), pp. 1783-1826. Cited 435 times. doi: 10.1103/PhysRevD.49.1783Schaefer, H.F. (1996) The Big Bang, Stephen Hawking, and God Lincoln Christian College and Seminary: Sídney, AustraliaSingh, S. (2005) The Origin of the Universe. Cited 3 times. Harper Perennial: Meghalaya, IndiaKhoury, J., Ovrut, B.A., Steinhardt, P.J., Turok, N. Ekpyrotic universe: Colliding branes and the origin of the hot big bang (2001) Physical Review D, 64 (12), art. no. 123522. Cited 1193 times. https://journals.aps.org/prd/issuesWallace, D. The Emergent Multiverse: Quantum Theory According to the Everett Interpretation (Open Access) (2012) The Emergent Multiverse: Quantum Theory According to the Everett Interpretation, 9780199546961, pp. 1-560. Cited 363 times. http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199546961.001.0001/acprof-9780199546961 ISBN: 978-019174141-8; 978-019954696-1 doi: 10.1093/acprof:oso/9780199546961.001.0001Carr, B., Ellis, G. Universe or multiverse? (Open Access) (2008) Astronomy and Geophysics, 49 (2), pp. 2.29-2.33. Cited 32 times. http://astrogeo.oxfordjournals.org/ doi: 10.1111/j.1468-4004.2008.49229.xEllis, G.F. Does the multiverse really exist? (2011) Sci. Am, 305, pp. 38-43. Cited 33 times.Weinberg, S. (2005) Living in the multiverse. Cited 83 times. arXiv arXiv:hep-th/0511037Boesgaard, A.M., Steigman, G. Big Bang nucleosynthesis: Theories and observations (1985) Annu. Rev. Astron. Astrophys, 23, pp. 319-378. Cited 396 times.Rothstein, B. (2009) Anti-Corruption: A Big-Bang Theory. Cited 23 times. QoG Working Paper; University of Gothenburg: Gothenburg, SwedenBarrau, A., Martineau, K., Moulin, F. A status report on the phenomenology of black holes in loop quantum gravity: Evaporation, tunneling to white holes, dark matter and gravitational waves (Open Access) (2018) Universe, 4 (10), art. no. 102. Cited 32 times. https://www.mdpi.com/2218-1997/4/10/102/pdf doi: 10.3390/universe4100102Wald, R.M., Ramaswamy, S. Particle production by white holes (1980) Physical Review D, 21 (10), pp. 2736-2741. Cited 20 times. doi: 10.1103/PhysRevD.21.2736Bekenstein, J.D. Black holes and information theory (2004) Contemporary Physics, 45 (1), pp. 31-43. Cited 73 times. doi: 10.1080/00107510310001632523Krylov, V. Acoustic black holes: Recent developments in the theory and applications (2014) IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 61 (8), art. no. 6863850, pp. 1296-1306. Cited 93 times. doi: 10.1109/TUFFC.2014.3036Chandrasekhar, S., Chandrasekhar, S. (1998) The Mathematical THEORY of black Holes, 69. Cited 3528 times. Oxford University Press: Oxford, UKYoum, D. Black holes and solitons in string theory (1999) Physics Report, 316 (1-3), pp. 1-232. Cited 152 times. http://www.elsevier.com/locate/physrep doi: 10.1016/S0370-1573(99)00037-XPage, D.N., Hawking, S.W. Gamma rays from primordial black holes (1976) Astrophys. J, 206, pp. 1-7. Cited 256 times.Kanti, P., Kleihaus, B., Kunz, J. Wormholes in dilatonic Einstein-Gauss-Bonnet theory (Open Access) (2011) Physical Review Letters, 107 (27), art. no. 271101. Cited 197 times. http://oai.aps.org/filefetch?identifier=10.1103/PhysRevLett.107.271101&component=fulltext&description=markup&format=xml doi: 10.1103/PhysRevLett.107.271101Safonova, M., Torres, D.F., Romero, G.E. Microlensing by natural wormholes: Theory and simulations (Open Access) (2002) Physical Review D, 65 (2), art. no. 023001. Cited 101 times. https://journals.aps.org/prd/issues doi: 10.1103/PhysRevD.65.023001Arkani-Hamed, N., Orgera, J., Polchinski, J. Euclidean wormholes in string theory (2007) Journal of High Energy Physics, 2007 (12), art. no. 018. Cited 88 times. doi: 10.1088/1126-6708/2007/12/018Agnese, A.G., La Camera, M. Wormholes in the Brans-Dicke theory of gravitation (1995) Physical Review D, 51 (4), pp. 2011-2013. Cited 164 times. doi: 10.1103/PhysRevD.51.2011Lipowski, A., Lipowska, D. Roulette-wheel selection via stochastic acceptance (Open Access) (2012) Physica A: Statistical Mechanics and its Applications, 391 (6), pp. 2193-2196. Cited 477 times. http://www.journals.elsevier.com/physica-a-statistical-mechanics-and-its-applications/ doi: 10.1016/j.physa.2011.12.004Montoya, O.D., Gil-González, W. On the numerical analysis based on successive approximations for power flow problems in AC distribution systems (Open Access) (2020) Electric Power Systems Research, 187, art. no. 106454. Cited 39 times. https://www.journals.elsevier.com/electric-power-systems-research doi: 10.1016/j.epsr.2020.106454Kennedy, James, Eberhart, Russell Particle swarm optimization (Open Access) (1995) IEEE International Conference on Neural Networks - Conference Proceedings, 4, pp. 1942-1948. Cited 52422 times.Abualigah, L., Diabat, A. A novel hybrid antlion optimization algorithm for multi-objective task scheduling problems in cloud computing environments (Open Access) (2021) Cluster Computing, 24 (1), pp. 205-223. Cited 146 times. https://link.springer.com/journal/volumesAndIssues/10586 doi: 10.1007/s10586-020-03075-5Hatamlou, A. Black hole: A new heuristic optimization approach for data clustering (Open Access) (2013) Information Sciences, 222, pp. 175-184. Cited 901 times. doi: 10.1016/j.ins.2012.08.023Chelouah, R., Siarry, P. Continuous genetic algorithm designed for the global optimization of multimodal functions (Open Access) (2000) Journal of Heuristics, 6 (2), pp. 191-213. Cited 250 times. doi: 10.1023/A:1009626110229Montoya, O.D., Garrid, V.M., Grisales-Noreña, L.F., González-Montoya, D., Ramos-Paja, C.A. Optimal Sizing of DGs in AC Distribution Networks via Black Hole Optimization (2018) 2018 IEEE 9th Power, Instrumentation and Measurement Meeting, EPIM 2018, art. no. 8756354. Cited 2 times. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8753126 ISBN: 978-153867842-8 doi: 10.1109/EPIM.2018.8756354http://purl.org/coar/resource_type/c_6501ORIGINALelectronics-11-01287-v2.pdfelectronics-11-01287-v2.pdfapplication/pdf1074483https://repositorio.utb.edu.co/bitstream/20.500.12585/12277/1/electronics-11-01287-v2.pdf260b0788a99caca1e92a21a339701408MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12277/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12277/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTelectronics-11-01287-v2.pdf.txtelectronics-11-01287-v2.pdf.txtExtracted texttext/plain96958https://repositorio.utb.edu.co/bitstream/20.500.12585/12277/4/electronics-11-01287-v2.pdf.txt9fdf3cbcaf46302d847f1c5899a06fabMD54THUMBNAILelectronics-11-01287-v2.pdf.jpgelectronics-11-01287-v2.pdf.jpgGenerated Thumbnailimage/jpeg7907https://repositorio.utb.edu.co/bitstream/20.500.12585/12277/5/electronics-11-01287-v2.pdf.jpga6ef9166b97c8dc8d56869b45b8d1340MD5520.500.12585/12277oai:repositorio.utb.edu.co:20.500.12585/122772023-07-22 00:17:53.132Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=