A Sequential Quadratic Programming Model for the Economic-Environmental Dispatch in MT-HVDC

This paper addresses the economic-environmental dispatch problem for thermal plants on a Multi-terminal HVDC power grid. A multi-objective optimization approach is used for modeling the compromise between fuel costs and the greenhouse gas emissions by the thermal plants. The grid topology is also co...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/9146
Acceso en línea:
https://hdl.handle.net/20.500.12585/9146
Palabra clave:
Direct-current grids
economic-environmental dispatch problem
multi-objective optimization
sequential quadratic programming
weighting factor method
Electric power system economics
Electric power transmission networks
Gas emissions
Gas plants
Greenhouse gases
HVDC power transmission
MATLAB
Multiobjective optimization
Power electronics
Power quality
Quadratic programming
Direct current
Economic environmental dispatches
Multi-objective problem
Optimization packages
Power balance equations
Sequential quadratic programming
Taylor's series expansion
Weighting factors
Electric load dispatching
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_aae1bba6fdeee19b66cf7617de721e06
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/9146
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv A Sequential Quadratic Programming Model for the Economic-Environmental Dispatch in MT-HVDC
title A Sequential Quadratic Programming Model for the Economic-Environmental Dispatch in MT-HVDC
spellingShingle A Sequential Quadratic Programming Model for the Economic-Environmental Dispatch in MT-HVDC
Direct-current grids
economic-environmental dispatch problem
multi-objective optimization
sequential quadratic programming
weighting factor method
Electric power system economics
Electric power transmission networks
Gas emissions
Gas plants
Greenhouse gases
HVDC power transmission
MATLAB
Multiobjective optimization
Power electronics
Power quality
Quadratic programming
Direct current
Economic environmental dispatches
Multi-objective problem
Optimization packages
Power balance equations
Sequential quadratic programming
Taylor's series expansion
Weighting factors
Electric load dispatching
title_short A Sequential Quadratic Programming Model for the Economic-Environmental Dispatch in MT-HVDC
title_full A Sequential Quadratic Programming Model for the Economic-Environmental Dispatch in MT-HVDC
title_fullStr A Sequential Quadratic Programming Model for the Economic-Environmental Dispatch in MT-HVDC
title_full_unstemmed A Sequential Quadratic Programming Model for the Economic-Environmental Dispatch in MT-HVDC
title_sort A Sequential Quadratic Programming Model for the Economic-Environmental Dispatch in MT-HVDC
dc.subject.keywords.none.fl_str_mv Direct-current grids
economic-environmental dispatch problem
multi-objective optimization
sequential quadratic programming
weighting factor method
Electric power system economics
Electric power transmission networks
Gas emissions
Gas plants
Greenhouse gases
HVDC power transmission
MATLAB
Multiobjective optimization
Power electronics
Power quality
Quadratic programming
Direct current
Economic environmental dispatches
Multi-objective problem
Optimization packages
Power balance equations
Sequential quadratic programming
Taylor's series expansion
Weighting factors
Electric load dispatching
topic Direct-current grids
economic-environmental dispatch problem
multi-objective optimization
sequential quadratic programming
weighting factor method
Electric power system economics
Electric power transmission networks
Gas emissions
Gas plants
Greenhouse gases
HVDC power transmission
MATLAB
Multiobjective optimization
Power electronics
Power quality
Quadratic programming
Direct current
Economic environmental dispatches
Multi-objective problem
Optimization packages
Power balance equations
Sequential quadratic programming
Taylor's series expansion
Weighting factors
Electric load dispatching
description This paper addresses the economic-environmental dispatch problem for thermal plants on a Multi-terminal HVDC power grid. A multi-objective optimization approach is used for modeling the compromise between fuel costs and the greenhouse gas emissions by the thermal plants. The grid topology is also considered by proposing a convex reformulation of the power balance equations through Taylor's series expansion method. To eliminate the error introduced by this linear approximation a sequential quadratic programming approach is applied by solving the multi-objective problem by a single-objective equivalent via weighting factor approach. A standard 6-node HVDC system is used to validate the proposed convex formulation. All simulations are performed in MATLAB with the quadprog optimization package. © 2019 IEEE.
publishDate 2019
dc.date.issued.none.fl_str_mv 2019
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:33:03Z
dc.date.available.none.fl_str_mv 2020-03-26T16:33:03Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_c94f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.hasversion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Conferencia
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv 2019 IEEE Workshop on Power Electronics and Power Quality Applications, PEPQA 2019 - Proceedings
dc.identifier.isbn.none.fl_str_mv 9781728116266
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/9146
dc.identifier.doi.none.fl_str_mv 10.1109/PEPQA.2019.8851570
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 56919564100
57191493648
36449223500
identifier_str_mv 2019 IEEE Workshop on Power Electronics and Power Quality Applications, PEPQA 2019 - Proceedings
9781728116266
10.1109/PEPQA.2019.8851570
Universidad Tecnológica de Bolívar
Repositorio UTB
56919564100
57191493648
36449223500
url https://hdl.handle.net/20.500.12585/9146
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.conferencedate.none.fl_str_mv 30 May 2019 through 31 May 2019
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85073427188&doi=10.1109%2fPEPQA.2019.8851570&partnerID=40&md5=76774da080dbc292ef3f2095cfe1786b
institution Universidad Tecnológica de Bolívar
dc.source.event.none.fl_str_mv 4th IEEE Workshop on Power Electronics and Power Quality Applications, PEPQA 2019
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/9146/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021583668248576
spelling 2020-03-26T16:33:03Z2020-03-26T16:33:03Z20192019 IEEE Workshop on Power Electronics and Power Quality Applications, PEPQA 2019 - Proceedings9781728116266https://hdl.handle.net/20.500.12585/914610.1109/PEPQA.2019.8851570Universidad Tecnológica de BolívarRepositorio UTB569195641005719149364836449223500This paper addresses the economic-environmental dispatch problem for thermal plants on a Multi-terminal HVDC power grid. A multi-objective optimization approach is used for modeling the compromise between fuel costs and the greenhouse gas emissions by the thermal plants. The grid topology is also considered by proposing a convex reformulation of the power balance equations through Taylor's series expansion method. To eliminate the error introduced by this linear approximation a sequential quadratic programming approach is applied by solving the multi-objective problem by a single-objective equivalent via weighting factor approach. A standard 6-node HVDC system is used to validate the proposed convex formulation. All simulations are performed in MATLAB with the quadprog optimization package. © 2019 IEEE.Universidad Tecnológica de Pereira, UTPThis work was partially supported by the program in electric power systems engineering at Universidad Tecnologica de Pereira.Recurso electrónicoapplication/pdfengInstitute of Electrical and Electronics Engineers Inc.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85073427188&doi=10.1109%2fPEPQA.2019.8851570&partnerID=40&md5=76774da080dbc292ef3f2095cfe1786b4th IEEE Workshop on Power Electronics and Power Quality Applications, PEPQA 2019A Sequential Quadratic Programming Model for the Economic-Environmental Dispatch in MT-HVDCinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fDirect-current gridseconomic-environmental dispatch problemmulti-objective optimizationsequential quadratic programmingweighting factor methodElectric power system economicsElectric power transmission networksGas emissionsGas plantsGreenhouse gasesHVDC power transmissionMATLABMultiobjective optimizationPower electronicsPower qualityQuadratic programmingDirect currentEconomic environmental dispatchesMulti-objective problemOptimization packagesPower balance equationsSequential quadratic programmingTaylor's series expansionWeighting factorsElectric load dispatching30 May 2019 through 31 May 2019Montoya O.D.Gil-González, WalterGarcés, AlejandroGrisales, L.F., Grajales, A., Montoya, O.D., Hincapie, R.A., Granada, M., Castro, C.A., Optimal location, sizing and operation of energy storage in distribution systems using multi-objective approach (2017) IEEE Latin America Transactions, 15 (6), pp. 1084-1090. , JuneWu, L., Wang, Y., Yuan, X., Zhou, S., Environmental/economic power dispatch problem using multi-objective differential evolution algorithm (2010) Electr. Power Syst. Res., 80 (9), pp. 1171-1181Montoya, O.D., Grajales, A., Garces, A., Castro, C.A., Distribution systems operation considering energy storage devices and distributed generation (2017) IEEE Latin America Transactions, 15 (5), pp. 890-900. , MayOrtega, A., Milano, F., Stochastic transient stability analysis of transmission systems with inclusion of energy storage devices (2018) IEEE Trans. Power Syst., 33 (1), pp. 1077-1079. , JanZhang, Y., Zhu, S., Chowdhury, A.A., Reliability modeling and control schemes of composite energy storage and wind generation system with adequate transmission upgrades (2011) IEEE Trans. Sustain. Energy, 2 (4), pp. 520-526. , OctHozouri, M.A., Abbaspour, A., Fotuhi-Firuzabad, M., Moeini-Aghtaie, M., On the use of pumped storage for wind energy maximization in transmission-constrained power systems (2015) IEEE Trans. Power Syst., 30 (2), pp. 1017-1025. , MarchKanellos, F.D., Grigoroudis, E., Hope, C., Kouikoglou, V.S., Phillis, Y.A., Optimal ghg emission abatement and aggregate economic damages of global warming (2017) IEEE Syst. J., 11 (4), pp. 2784-2793. , DecKainuma, M., Matsuoka, Y., Morita, T., Hibino, G., Development of an end-use model for analyzing policy options to reduce greenhouse gas emissions (1999) IEEE Trans Syst Man Cybern C Appl Rev, 29 (3), pp. 317-324. , AugPark, H., Baldick, R., Stochastic generation capacity expansion planning reducing greenhouse gas emissions (2015) IEEE Trans. Power Syst., 30 (2), pp. 1026-1034. , MarchBora, T.C., Mariani, V.C., Dos Santos Coelho, L., Multi-objective optimization of the environmental-economic dispatch with reinforcement learning based on non-dominated sorting genetic algorithm (2019) Appl. Therm. Eng., 146, pp. 688-700Qu, B., Zhu, Y., Jiao, Y., Wu, M., Suganthan, P., Liang, J., A survey on multi-objective evolutionary algorithms for the solution of the environmental/economic dispatch problems (2018) Swarm Evol. Comput., 38, pp. 1-11Bhattachaijee, K., Bhattacharya, A., Nee Dey, S.H., Backtracking search optimization based economic environmental power dispatch problems (2015) Int. J. Electr. Power Energy Syst., 73, pp. 830-842Alawode, K., Jubril, A., Kehinde, L., Ogunbona, P., Semidefinite programming solution of economic dispatch problem with non-smooth, non-convex cost functions (2018) Electr. Power Syst. Res., 164, pp. 178-187Manoharan, P.S., Kannan, P.S., Baskar, S., Iruthayarajan, M.W., Penalty parameter-less constraint handling scheme based evolutionary algorithm solutions to economic dispatch (2008) IET Gener Transrn Dis, 2 (4), pp. 478-490. , JulyYasar, C., Ozyon, S., Solution to scalarized environmental economic power dispatch problem by using genetic algorithm (2012) Int. J. Electr. Power Energy Syst., 38 (1), pp. 54-62Zou, D., Li, S., Kong, X., Ouyang, H., Li, Z., Solving the combined heat and power economic dispatch problems by an improved genetic algorithm and a new constraint handling strategy (2019) Appl. Energy, 237, pp. 646-670Gherbi, Y.A., Bouzeboudja, H., Gherbi, F.Z., The combined economic environmental dispatch using new hybrid metaheuristic (2016) Energy, 115, pp. 468-477Kheshti, M., Ding, L., Ma, S., Zhao, B., Double weighted particle swarm optimization to non-convex wind penetrated emission/economic dispatch and multiple fuel option systems (2018) Renewable Energy, 125, pp. 1021-1037Abdelaziz, A., Ali, E., Elazim, S.A., Implementation of flower pollination algorithm for solving economic load dispatch and combined economic emission dispatch problems in power systems (2016) Energy, 101, pp. 506-518Mahdi, F.P., Vasant, P., Kallimani, V., Watada, J., Fai, P.Y.S., Abdullah-Al-Wadud, M., A holistic review on optimization strategies for combined economic emission dispatch problem (2018) Renewable Sustainable Energy Rev., 81, pp. 3006-3020Wei, W., Wang, J., Mei, S., Convexification of the nash bargaining based environmental-economic dispatch (2016) IEEE Trans. Power Syst., 31 (6), pp. 5208-5209. , NovChen, F., Huang, G., Fan, Y., Liao, R., A nonlinear fractional programming approach for environmentaleconomic power dispatch (2016) Int. J. Electr. Power Energy Syst., 78, pp. 463-469Dos Santos, M.R.B., Balbo, A.R., Goncalves, E., Soler, E.M., Pinheiro, R.B.N.M., Nepomuceno, L., Baptista, E.C., A proposed methodology involving progressive bounded constraints and interior-exterior methods in smoothed economic/environmental dispatch problems (2017) IEEE Latin America Transactions, 15 (8), pp. 1422-1431Montoya, O.D., Gil-Gonzalez, W., Garces, A., Sequential quadratic programming models for solving the opf problem in dc grids (2019) Electr. Power Syst. Res., 169, pp. 18-23Li, J., Liu, F., Wang, Z., Low, S.H., Mei, S., Optimal power flow in stand-alone dc microgrids (2018) IEEE Trans. Power Syst., 33 (5), pp. 5496-5506. , SepGil-Gonzalez, W., Montoya, O.D., Holguin, E., Garces, A., Na, L.F.G., Economic dispatch of energy storage systems in dc microgrids employing a semidefinite programming model (2019) J. Energy Storage, 21, pp. 1-8Montoya, O.D., Numerical approximation of the maximum power consumption in dc-mgs with cpls via an sdp model (2018) IEEE Trans. Circuits Syst. II, p. 1Montoya, O.D., Gil-Gonzlez, W., Garces, A., Optimal power flow on dc microgrids: A quadratic convex approximation (2018) IEEE Trans. Circuits Syst. II, p. 1Montoya, O.D., Na, L.G.-N., Gonzalez-Montoya, D., Ramos-Paja, C., Garces, A., Linear power flow formulation for low-voltage dc power grids (2018) Electr. Power Syst. Res., 163, pp. 375-381Montoya, O.D., Garrido, V.M., Gil-Gonzalez, W., Na, L.G.-N., Power flow analysis in dc grids: Two alternative numerical methods (2019) IEEE Trans. Circuits Syst. II, p. 1Gavriluta, C., Candela, I., Citro, C., Luna, A., Rodriguez, P., Design considerations for primary control in multi-terminal vsc-hvdc grids (2015) Electr. Power Syst. Res., 122, pp. 33-41http://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9146/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9146oai:repositorio.utb.edu.co:20.500.12585/91462023-05-26 10:23:02.322Repositorio Institucional UTBrepositorioutb@utb.edu.co