Region growing segmentation of ultrasound images using gradients and local statistics

This paper describes a region growing segmentation algorithm for medical ultrasound images. The algorithm starts with anisotropic diffusion filtering to reduce speckle noise without blurring the edges. Then, region growing is performed starting from a seed point, using a merging criterion that compa...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2017
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/8952
Acceso en línea:
https://hdl.handle.net/20.500.12585/8952
Palabra clave:
Anisotropic diffusion filtering
Medical ultrasound
Region growing segmentation
Anisotropy
Imaging systems
Medical imaging
Optical anisotropy
Tomography
Ultrasonic imaging
Anisotropic diffusion filtering
Intensity gradients
Medical ultrasound
Medical ultrasound images
Morphological closing
Region growing
Segmentation algorithms
Ultrasound image segmentation
Image segmentation
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_aad0919fe9ad57bac3aa211048bf5ce8
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/8952
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Region growing segmentation of ultrasound images using gradients and local statistics
title Region growing segmentation of ultrasound images using gradients and local statistics
spellingShingle Region growing segmentation of ultrasound images using gradients and local statistics
Anisotropic diffusion filtering
Medical ultrasound
Region growing segmentation
Anisotropy
Imaging systems
Medical imaging
Optical anisotropy
Tomography
Ultrasonic imaging
Anisotropic diffusion filtering
Intensity gradients
Medical ultrasound
Medical ultrasound images
Morphological closing
Region growing
Segmentation algorithms
Ultrasound image segmentation
Image segmentation
title_short Region growing segmentation of ultrasound images using gradients and local statistics
title_full Region growing segmentation of ultrasound images using gradients and local statistics
title_fullStr Region growing segmentation of ultrasound images using gradients and local statistics
title_full_unstemmed Region growing segmentation of ultrasound images using gradients and local statistics
title_sort Region growing segmentation of ultrasound images using gradients and local statistics
dc.contributor.editor.none.fl_str_mv Duric N.
Heyde B.
dc.subject.keywords.none.fl_str_mv Anisotropic diffusion filtering
Medical ultrasound
Region growing segmentation
Anisotropy
Imaging systems
Medical imaging
Optical anisotropy
Tomography
Ultrasonic imaging
Anisotropic diffusion filtering
Intensity gradients
Medical ultrasound
Medical ultrasound images
Morphological closing
Region growing
Segmentation algorithms
Ultrasound image segmentation
Image segmentation
topic Anisotropic diffusion filtering
Medical ultrasound
Region growing segmentation
Anisotropy
Imaging systems
Medical imaging
Optical anisotropy
Tomography
Ultrasonic imaging
Anisotropic diffusion filtering
Intensity gradients
Medical ultrasound
Medical ultrasound images
Morphological closing
Region growing
Segmentation algorithms
Ultrasound image segmentation
Image segmentation
description This paper describes a region growing segmentation algorithm for medical ultrasound images. The algorithm starts with anisotropic diffusion filtering to reduce speckle noise without blurring the edges. Then, region growing is performed starting from a seed point, using a merging criterion that compares intensity gradients to the noise level inside the region. Finally, the boundaries are smoothed using morphological closing. The algorithm was evaluated with two simulated images and eleven phantom images and converged in 10 of them with accurate region delimitation. Preliminary results show that the proposed method can be used for ultrasound image segmentation and does not require previous knowledge of the anatomy of the structures. © COPYRIGHT SPIE. Downloading of the abstract is permitted for personal use only.
publishDate 2017
dc.date.issued.none.fl_str_mv 2017
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:32:39Z
dc.date.available.none.fl_str_mv 2020-03-26T16:32:39Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_c94f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.hasversion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Conferencia
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Progress in Biomedical Optics and Imaging - Proceedings of SPIE; Vol. 10139
dc.identifier.isbn.none.fl_str_mv 9781510607231
dc.identifier.issn.none.fl_str_mv 16057422
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/8952
dc.identifier.doi.none.fl_str_mv 10.1117/12.2254518
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 57190165939
57190688459
57210822856
identifier_str_mv Progress in Biomedical Optics and Imaging - Proceedings of SPIE; Vol. 10139
9781510607231
16057422
10.1117/12.2254518
Universidad Tecnológica de Bolívar
Repositorio UTB
57190165939
57190688459
57210822856
url https://hdl.handle.net/20.500.12585/8952
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.conferencedate.none.fl_str_mv 15 February 2017 through 16 February 2017
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv SPIE
publisher.none.fl_str_mv SPIE
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85020784325&doi=10.1117%2f12.2254518&partnerID=40&md5=7e28cc8593ae2e4f109d27c383ae818d
Scopus2-s2.0-85020784325
institution Universidad Tecnológica de Bolívar
dc.source.event.none.fl_str_mv Medical Imaging 2017: Ultrasonic Imaging and Tomography
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/8952/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021679218688000
spelling Duric N.Heyde B.Mercado-Aguirre I.M.Patiño Vanegas, AlbertoContreras Ortiz, Sonia Helena2020-03-26T16:32:39Z2020-03-26T16:32:39Z2017Progress in Biomedical Optics and Imaging - Proceedings of SPIE; Vol. 10139978151060723116057422https://hdl.handle.net/20.500.12585/895210.1117/12.2254518Universidad Tecnológica de BolívarRepositorio UTB571901659395719068845957210822856This paper describes a region growing segmentation algorithm for medical ultrasound images. The algorithm starts with anisotropic diffusion filtering to reduce speckle noise without blurring the edges. Then, region growing is performed starting from a seed point, using a merging criterion that compares intensity gradients to the noise level inside the region. Finally, the boundaries are smoothed using morphological closing. The algorithm was evaluated with two simulated images and eleven phantom images and converged in 10 of them with accurate region delimitation. Preliminary results show that the proposed method can be used for ultrasound image segmentation and does not require previous knowledge of the anatomy of the structures. © COPYRIGHT SPIE. Downloading of the abstract is permitted for personal use only.Alpinion Medical Systems;The Society of Photo-Optical Instrumentation Engineers (SPIE)Recurso electrónicoapplication/pdfengSPIEhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85020784325&doi=10.1117%2f12.2254518&partnerID=40&md5=7e28cc8593ae2e4f109d27c383ae818dScopus2-s2.0-85020784325Medical Imaging 2017: Ultrasonic Imaging and TomographyRegion growing segmentation of ultrasound images using gradients and local statisticsinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fAnisotropic diffusion filteringMedical ultrasoundRegion growing segmentationAnisotropyImaging systemsMedical imagingOptical anisotropyTomographyUltrasonic imagingAnisotropic diffusion filteringIntensity gradientsMedical ultrasoundMedical ultrasound imagesMorphological closingRegion growingSegmentation algorithmsUltrasound image segmentationImage segmentation15 February 2017 through 16 February 2017Kass, M., Witkin, A., Terzopoulos, D., Snakes: Active contour models (1988) International Journal of Computer Vision, 1 (4), pp. 321-331Caselles, V., Kimmel, R., Sapiro, G., Geodesic active contours (1997) International Journal of Computer Vision, 22 (1), pp. 61-79Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J., Active shape models-their training and application (1995) Computer Vision and Image Understanding, 61 (1), pp. 38-59Zhan, Y., Shen, D., Deformable segmentation of 3-d ultrasound prostate images using statistical texture matching method (2006) Medical Imaging, IEEE Transactions on, 25 (3), pp. 256-272Wang, W., Qin, J., Chui, Y.-P., Heng, P.-A., A multiresolution framework for ultrasound image segmentation by combinative active contours (2013) Engineering in Medicine and Biology Society (EMBC), 2013 35th Annual International Conference of the IEEE, pp. 1144-1147. , IEEEWang, W., Zhu, L., Qin, J., Chui, Y.-P., Li, B.N., Heng, P.-A., Multiscale geodesic active contours for ultrasound image segmentation using speckle reducing anisotropic diffusion (2014) Optics and Lasers in Engineering, 54, pp. 105-116Gupta, D., Anand, R., Tyagi, B., A hybrid segmentation method based on Gaussian kernel fuzzy clustering and region based active contour model for ultrasound medical images (2015) Biomedical Signal Processing and Control, 16, pp. 98-112Yu, Y., Cheng, J., Li, J., Chen, W., Chiu, B., Automatic prostate segmentation from transrectal ultrasound images (2014) Biomedical Circuits and Systems Conference (BioCAS), 2014 IEEE, pp. 117-120. , IEEEThakur, A., Anand, R.S., A local statistics based region growing segmentation method for ultrasound medical images (2004) International Journal of Signal Processing, 1 (2), pp. 141-146Lee, L.-K., Liew, S.-C., Breast ultrasound automated roi segmentation with region growing (2015) Software Engineering and Computer Systems (ICSECS), 2015 4th International Conference on, pp. 177-182. , IEEEJensen, J.A., Field: A program for simulating ultrasound systems (1996) Medical and Biological Engineering and Computing, 34, pp. 351-352Jensen, J.A., Svendsen, N.B., Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers (1992) IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 39 (2), pp. 262-267Giraldo-Guzman, J., Porto-Solano, O., Cadena-Bonfanti, A., Contreras-Ortiz, S.H., Speckle reduction in echocardiography by temporal compounding and anisotropic diffusion filtering (2015) Tenth International Symposium on Medical Information Processing and Analysis, 92871F-92871F, International Society for Optics and Photonicshttp://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/8952/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/8952oai:repositorio.utb.edu.co:20.500.12585/89522023-05-25 15:53:58.528Repositorio Institucional UTBrepositorioutb@utb.edu.co