A density functional theory study of the reconstruction of gold (111) surfaces
We studied (p × √3) gold (111) surface reconstructions within the DFT/PW91 approximation. Our findings clearly show that the reconstruction is energetically favorable in unreconstructed surfaces equal to or larger than the unit cell of the final reconstructed surface. Reconstructions in surfaces sma...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2014
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/9035
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/9035
- Palabra clave:
- Gold
Density functional theory studies
Gold particles
Reconstructed surfaces
Sub nanometers
Type reconstruction
Unit cells
Repair
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_aa7c5147e58f673ce5b3d034bf094f9f |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/9035 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
A density functional theory study of the reconstruction of gold (111) surfaces |
title |
A density functional theory study of the reconstruction of gold (111) surfaces |
spellingShingle |
A density functional theory study of the reconstruction of gold (111) surfaces Gold Density functional theory studies Gold particles Reconstructed surfaces Sub nanometers Type reconstruction Unit cells Repair |
title_short |
A density functional theory study of the reconstruction of gold (111) surfaces |
title_full |
A density functional theory study of the reconstruction of gold (111) surfaces |
title_fullStr |
A density functional theory study of the reconstruction of gold (111) surfaces |
title_full_unstemmed |
A density functional theory study of the reconstruction of gold (111) surfaces |
title_sort |
A density functional theory study of the reconstruction of gold (111) surfaces |
dc.subject.keywords.none.fl_str_mv |
Gold Density functional theory studies Gold particles Reconstructed surfaces Sub nanometers Type reconstruction Unit cells Repair |
topic |
Gold Density functional theory studies Gold particles Reconstructed surfaces Sub nanometers Type reconstruction Unit cells Repair |
description |
We studied (p × √3) gold (111) surface reconstructions within the DFT/PW91 approximation. Our findings clearly show that the reconstruction is energetically favorable in unreconstructed surfaces equal to or larger than the unit cell of the final reconstructed surface. Reconstructions in surfaces smaller than ∼2.95 nm in the [11̄0] direction are not more stable than the unreconstructed surface, and this may explain why (p × √3) type reconstructions have not been observed in subnanometer gold particles. We found that reconstructions with (22 × √3) and (23 × √3) unit cells, usually reported in experiments, are isoenergetic. © 2014 American Chemical Society. |
publishDate |
2014 |
dc.date.issued.none.fl_str_mv |
2014 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:32:49Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:32:49Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasVersion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
Journal of Physical Chemistry C; Vol. 118, Núm. 29; pp. 15624-15629 |
dc.identifier.issn.none.fl_str_mv |
19327447 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/9035 |
dc.identifier.doi.none.fl_str_mv |
10.1021/jp411368v |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
35094573000 7003322749 |
identifier_str_mv |
Journal of Physical Chemistry C; Vol. 118, Núm. 29; pp. 15624-15629 19327447 10.1021/jp411368v Universidad Tecnológica de Bolívar Repositorio UTB 35094573000 7003322749 |
url |
https://hdl.handle.net/20.500.12585/9035 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessRights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_16ec |
eu_rights_str_mv |
restrictedAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
American Chemical Society |
publisher.none.fl_str_mv |
American Chemical Society |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84905045699&doi=10.1021%2fjp411368v&partnerID=40&md5=ab4e8550e8c9dafe0869f4d081bf1d81 |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/9035/1/MiniProdInv.png |
bitstream.checksum.fl_str_mv |
0cb0f101a8d16897fb46fc914d3d7043 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021681028530176 |
spelling |
2020-03-26T16:32:49Z2020-03-26T16:32:49Z2014Journal of Physical Chemistry C; Vol. 118, Núm. 29; pp. 15624-1562919327447https://hdl.handle.net/20.500.12585/903510.1021/jp411368vUniversidad Tecnológica de BolívarRepositorio UTB350945730007003322749We studied (p × √3) gold (111) surface reconstructions within the DFT/PW91 approximation. Our findings clearly show that the reconstruction is energetically favorable in unreconstructed surfaces equal to or larger than the unit cell of the final reconstructed surface. Reconstructions in surfaces smaller than ∼2.95 nm in the [11̄0] direction are not more stable than the unreconstructed surface, and this may explain why (p × √3) type reconstructions have not been observed in subnanometer gold particles. We found that reconstructions with (22 × √3) and (23 × √3) unit cells, usually reported in experiments, are isoenergetic. © 2014 American Chemical Society.Recurso electrónicoapplication/pdfengAmerican Chemical Societyhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84905045699&doi=10.1021%2fjp411368v&partnerID=40&md5=ab4e8550e8c9dafe0869f4d081bf1d81A density functional theory study of the reconstruction of gold (111) surfacesinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1GoldDensity functional theory studiesGold particlesReconstructed surfacesSub nanometersType reconstructionUnit cellsRepairTorres E.Dilabio G.A.Hammer, B., Norskøv, J.K., Why Gold Is the Noblest of All the Metals (1995) Nature, 376, pp. 238-240Love, J., Estroff, L., Kriebel, J., Nuzzo, R., Whitesides, G., Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology (2005) Chem. Rev., 105, pp. 1103-1170Heyraud, J., Métois, J., Anomalous 422 Diffraction Spots from {111} Flat Gold Crystallites: (111) Surface Reconstruct Ion and Moiré Fringes between the Surface and the Bulk (1980) Surf. Sci., 100, pp. 519-528Emch, R., Nogami, J., Dovek, M.M., Lang, C.A., Quate, C.F., Characterization of Gold Surfaces for Use As Substrates in Scanning Tunneling Microscopy Studies (1989) J. Appl. Phys., 65, pp. 79-84Schreiber, F., Structure and Growth of Self-Assembling Monolayers (2000) Prog. Surf. Sci., 65, pp. 151-257Finch, G.I., Quarrell, A.G., Wilman, H., Electron Diffraction and Surface Structure (1935) Trans. Faraday Soc., 31, pp. 1051-1080Yagi, K., Takayanagi, K., Kobayashi, K., Osakabe, N., Tanishiro, Y., Honjo, G., Surface Study by an {UHV} Electron Microscope (1979) Surf. Sci., 86, pp. 174-181Harten, U., Lahee, A.M., Toennies, J.P., Wöll, C., Observation of a Soliton Reconstruction of Au(111) by High-Resolution Helium-Atom Diffraction (1985) Phys. Rev. Lett., 54, pp. 2619-2622Wöll, C., Chiang, S., Wilson, R.J., Lippel, P.H., Determination of Atom Positions at Stacking-Fault Dislocations on Au(111) by Scanning Tunneling Microscopy (1989) Phys. Rev. B, 39, pp. 7988-7991Barth, J.V., Brune, H., Ertl, G., Behm, R.J., Scanning Tunneling Microscopy Observations on the Reconstructed Au(111) Surface: Atomic Structure, Long-Range Superstructure, Rotational Domains, and Surface Defects (1990) Phys. Rev. B, 42, pp. 9307-9318Tao, N.J., Lindsay, S.M., Observations of the 22 × √3 Reconstruction of Au(111) under Aqueous Solutions Using Scanning Tunneling Microscopy (1991) J. Appl. Phys., 70, pp. 5141-5143Sandy, A.R., Mochrie, S.G.J., Zehner, D.M., Huang, K.G., Gibbs, D., Structure and Phases of the Au(111) Surface: X-ray-Scattering Measurements (1991) Phys. Rev. B, 43, pp. 4667-4687McIntosh, E.M., Kole, P.R., El-Batanouny, M., Chisnall, D.M., Ellis, J., Allison, W., Measurement of the Phason Dispersion of Misfit Dislocations on the Au(111) Surface (2013) Phys. Rev. Lett., 110, p. 086103Ercolessi, F., Bartolini, A., Garofalo, M., Parrinello, M., Tosatti, E., Au Surface Reconstructions in the Glue Model (1987) Surf. Sci., 189-190, pp. 636-640Ravelo, R., El-Batanouny, M., Molecular-Dynamics Study of the Reconstructed Au(111) Surface: Low Temperature (1989) Phys. Rev. B, 40, pp. 9574-9589Hohenberg, P., Kohn, W., Inhomogeneous Electron Gas (1964) Phys. Rev., 136, pp. 864-B871Kohn, W., Sham, L.J., Self-Consistent Equations Including Exchange and Correlation Effects (1965) Phys. Rev., 140, pp. 1133-A1138Wang, Y., Hush, N.S., Reimers, J.R., Simulation of the Au(111)-(22 × √3) Surface Reconstruction (2007) Phys. Rev. B, 75, p. 233416Hanke, F., Björk, J., Structure and Local Reactivity of the Au(111) Surface Reconstruction (2013) Phys. Rev. B, 87, p. 235422Kresse, G., Furthmüller, J., Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set (1996) Phys. Rev. B, 54, pp. 11169-11186Perdew, J.P., Wang, Y., Accurate and Simple Analytic Representation of the Electron-Gas Correlation Energy (1992) Phys. Rev. B, 45, pp. 13244-13249Blöchl, P.E., Projector Augmented-Wave Method (1994) Phys. Rev. B, 50, pp. 17953-17979Kresse, G., Joubert, D., From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method (1999) Phys. Rev. B, 59, pp. 1758-1775Monkhorst, H.J., Pack, J.D., Special Points for Brillouin-Zone Integrations (1976) Phys. Rev. B, 13, pp. 5188-5192Boettger, J.C., Nonconvergence of Surface Energies Obtained from Thin-Film Calculations (1994) Phys. Rev. B, 49, pp. 16798-16800Boettger, J.C., Persistent Quantum-Size Effect in Aluminum Films up to Twelve Atoms Thick (1996) Phys. Rev. B, 53, pp. 13133-13137Fiorentini, V., Methfessel, M., Extracting Convergent Surface Formation Energies from Slab Calculations (1998) J. Phys.: Condens. Matter, 10, p. 895Boettger, J.C., Smith, J.R., Birkenheuer, U., Rösch, N., Trickey, S.B., Sabin, J.R., Apell, S.P., Extracting Convergent Surface Formation Energies from Slab Calculations (1998) J. Phys.: Condens. Matter, 10, p. 893Frankcombe, T.J., Løvvik, O.M., The Crystal Structure and Surface Energy of NaAlH4: A Comparison of DFT Methodologies (2006) J. Phys. Chem. B, 110, pp. 622-630http://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9035/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9035oai:repositorio.utb.edu.co:20.500.12585/90352021-02-02 14:05:23.887Repositorio Institucional UTBrepositorioutb@utb.edu.co |