Estimation of backbone model parameters for simulation of exposed column base plates

An approach is presented for the estimation of the parameters required to simulate the nonlinear monotonic (i.e., backbone) rotational response of Exposed-Column-Base-Plate (ECBP) connections subjected to moment and axial compression. A trilinear backbone curve is selected to represent the rotationa...

Full description

Autores:
Villar-Salinas, Sergio
Kanvinde, Amit
Lopez-Almansa, Francisco
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12740
Acceso en línea:
https://hdl.handle.net/20.500.12585/12740
https://doi.org/10.1016/j.jcsr.2024.109034
Palabra clave:
Exposed-column-baseplates
Moment-rotation curves
Axial compression ratio
Regression models
Performance-based assessment
LEMB
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_a9cb943b7f612928d0f13063e830afae
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12740
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Estimation of backbone model parameters for simulation of exposed column base plates
title Estimation of backbone model parameters for simulation of exposed column base plates
spellingShingle Estimation of backbone model parameters for simulation of exposed column base plates
Exposed-column-baseplates
Moment-rotation curves
Axial compression ratio
Regression models
Performance-based assessment
LEMB
title_short Estimation of backbone model parameters for simulation of exposed column base plates
title_full Estimation of backbone model parameters for simulation of exposed column base plates
title_fullStr Estimation of backbone model parameters for simulation of exposed column base plates
title_full_unstemmed Estimation of backbone model parameters for simulation of exposed column base plates
title_sort Estimation of backbone model parameters for simulation of exposed column base plates
dc.creator.fl_str_mv Villar-Salinas, Sergio
Kanvinde, Amit
Lopez-Almansa, Francisco
dc.contributor.author.none.fl_str_mv Villar-Salinas, Sergio
Kanvinde, Amit
Lopez-Almansa, Francisco
dc.subject.keywords.spa.fl_str_mv Exposed-column-baseplates
Moment-rotation curves
Axial compression ratio
Regression models
Performance-based assessment
topic Exposed-column-baseplates
Moment-rotation curves
Axial compression ratio
Regression models
Performance-based assessment
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description An approach is presented for the estimation of the parameters required to simulate the nonlinear monotonic (i.e., backbone) rotational response of Exposed-Column-Base-Plate (ECBP) connections subjected to moment and axial compression. A trilinear backbone curve is selected to represent the rotational response, defined by three deformation and two strength parameters; these properly represent the stiffness, strength, and ductility of the connections. This approach is accompanied by a tool to facilitate convenient estimation of the parameters. The approach is based on a combination of behavioral insights and physics-based models (for some parameters) as well as regression for other parameters, which are estimated from a dataset of eighty-four experiments on ECBP connections conducted over the last forty years in the United States, Europe, and Asia. Predictive equations are provided to estimate the various parameters defining the nonlinear response, and their efficacy is examined by comparing them with the test data; in addition, well-established techniques are implemented to avoid collinearity and the overfitting of regression models. The results show that the models presented in this work provide robust and accurate predictions for in-sample and out-of-sample data. Limitations are outlined.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-09-27T19:44:21Z
dc.date.available.none.fl_str_mv 2024-09-27T19:44:21Z
dc.date.issued.none.fl_str_mv 2024-09-12
dc.date.submitted.none.fl_str_mv 2024-09-25
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Villar-Salinas, S., A. Kanvinde, and F. Lopez-Almansa. 2024. “Estimation of backbone model parameters for simulation of exposed column base plates.” J. Constr. Steel Res., 223 (December). https://doi.org/10.1016/j.jcsr.2024.109034.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12740
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1016/j.jcsr.2024.109034
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Villar-Salinas, S., A. Kanvinde, and F. Lopez-Almansa. 2024. “Estimation of backbone model parameters for simulation of exposed column base plates.” J. Constr. Steel Res., 223 (December). https://doi.org/10.1016/j.jcsr.2024.109034.
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12740
https://doi.org/10.1016/j.jcsr.2024.109034
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 15 pags.
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.publisher.faculty.spa.fl_str_mv Ingeniería
dc.publisher.sede.spa.fl_str_mv Campus Tecnológico
dc.publisher.discipline.spa.fl_str_mv Ingeniería Civil
dc.source.spa.fl_str_mv Journal of Constructional Steel Research
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12740/1/VILLAR-SALINAS%20et%20al-2024-Estimation%20of%20Backbone%20model%20parameters%20for%20simulation%20of%20ECBP.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12740/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12740/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12740/4/VILLAR-SALINAS%20et%20al-2024-Estimation%20of%20Backbone%20model%20parameters%20for%20simulation%20of%20ECBP.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12740/5/VILLAR-SALINAS%20et%20al-2024-Estimation%20of%20Backbone%20model%20parameters%20for%20simulation%20of%20ECBP.pdf.jpg
bitstream.checksum.fl_str_mv 42a0302c9ea500361539208905da6c08
4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
06f62de3e616051d998cf6e82958f40c
6fa072fc4e3e4bf8bec3d1996642a03c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1812096395792875520
spelling Villar-Salinas, Sergiofc373e68-d8e4-4b76-9a03-14820eeb1be1Kanvinde, Amit5e58946c-f8cc-4020-ad35-9e5a1a04cb4fLopez-Almansa, Franciscobbacecf1-0935-4453-9276-37cf74debd932024-09-27T19:44:21Z2024-09-27T19:44:21Z2024-09-122024-09-25Villar-Salinas, S., A. Kanvinde, and F. Lopez-Almansa. 2024. “Estimation of backbone model parameters for simulation of exposed column base plates.” J. Constr. Steel Res., 223 (December). https://doi.org/10.1016/j.jcsr.2024.109034.https://hdl.handle.net/20.500.12585/12740https://doi.org/10.1016/j.jcsr.2024.109034Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarAn approach is presented for the estimation of the parameters required to simulate the nonlinear monotonic (i.e., backbone) rotational response of Exposed-Column-Base-Plate (ECBP) connections subjected to moment and axial compression. A trilinear backbone curve is selected to represent the rotational response, defined by three deformation and two strength parameters; these properly represent the stiffness, strength, and ductility of the connections. This approach is accompanied by a tool to facilitate convenient estimation of the parameters. The approach is based on a combination of behavioral insights and physics-based models (for some parameters) as well as regression for other parameters, which are estimated from a dataset of eighty-four experiments on ECBP connections conducted over the last forty years in the United States, Europe, and Asia. Predictive equations are provided to estimate the various parameters defining the nonlinear response, and their efficacy is examined by comparing them with the test data; in addition, well-established techniques are implemented to avoid collinearity and the overfitting of regression models. The results show that the models presented in this work provide robust and accurate predictions for in-sample and out-of-sample data. Limitations are outlined.Fundación Carolina, Universidad Tecnológica de Bolívar, PCEM SAS15 pags.application/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Journal of Constructional Steel ResearchEstimation of backbone model parameters for simulation of exposed column base platesinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Exposed-column-baseplatesMoment-rotation curvesAxial compression ratioRegression modelsPerformance-based assessmentLEMBCartagena de IndiasIngenieríaCampus TecnológicoIngeniería CivilPúblico generalI. Piana, A.F.G. Calenzani Study of design methodologies of steel column bases Ibracon Struct. Mater. J., 11 (2018), pp. 203-243, 10.1590/s1983-41952018000100011Eröz Murat White Donald W., DesRoches Reginald, Direct analysis and design of steel frames accounting for partially restrained column base conditions J. Struct. Eng., 134 (2008), pp. 1508-1517, 10.1061/(ASCE)0733-9445(2008)134:9(1508J.P. Jaspart, D. Vandegans Application of the component method to column bases J. Constr. Steel Res., 48 (1998), pp. 89-106, 10.1016/S0143-974X(98)90196-1J.C. Ermopoulos, G.T. Michaltsos Analytical modelling of stress distribution under column base plates Second World Conf. Steel Constr., 46 (1998), p. 246, 10.1016/S0143-974X(98)80026-6J.E. Grauvilardell, D. Lee, J.F. Hajjar, R.J. Dexter Synthesis of design, testing and analysis research on steel column base plate connections in high-seismic zones 181 (2005)K. Tsavdaridis, M. Shaheen, C. Baniotopoulos, E. Salem Analytical approach of anchor rod stiffness and Steel Base-plate calculation under tension Structures, 5 (2015), pp. 207-218, 10.1016/j.istruc.2015.11.001S. Khodaie, M.R. Mohamadi-shooreh, M. Mofid Parametric analyses on the initial stiffness of the SHS column base plate connections using FEM Eng. Struct., 34 (2012), pp. 363-370, 10.1016/j.engstruct.2011.09.026M.A.K. Fasaee, M.R. Banan, S. Ghazizadeh Capacity of exposed column base connections subjected to uniaxial and biaxial bending moments J. Constr. Steel Res., 148 (2018), pp. 361-370, 10.1016/j.jcsr.2018.05.025F. Zareian, A. Kanvinde Effect of column-base flexibility on the seismic response and safety of steel moment-resisting frames Earthquake Spectra, 29 (2013), pp. 1537-1559, 10.1193/030512EQS062MM. Latour, G. Rizzano Mechanical modelling of exposed column base plate joints under cyclic loads J. Constr. Steel Res., 162 (2019), Article 105726, 10.1016/j.jcsr.2019.105726A.M. Kanvinde, S.J. Jordan, R.J. Cooke Exposed column base plate connections in moment frames — simulations and behavioral insights J. Constr. Steel Res., 84 (2013), pp. 82-93, 10.1016/j.jcsr.2013.02.015J.M. Fisher, L.A. Kloiber Design Guide 1: Base Plate and Anchor Rod Design (second edition) (2006) https://www.aisc.org/Design-Guide-1-Base-Plate-and-Anchor-Rod-Design-Second-Edition-Print#.XVfizOhKhPYAISC 341 Seismic Provisions for Structural Steel Buildings https://www.aisc.org/globalassets/aisc/publications/standards/seismic-provisions-for-structural-steel-buildings-ansi-aisc-341-16.pdf (2022), Accessed 12th Nov 2018A. Kanvinde, D. Grilli, F. Zareian Rotational stiffness of exposed column base connections: experiments and analytical models J. Struct. Eng., 138 (2012), pp. 549-560, 10.1061/(ASCE)ST.1943-541X.0000495M. Latour, V. Piluso, G. Rizzano Rotational behaviour of column base plate connections: experimental analysis and modelling Eng. Struct., 68 (2014), pp. 14-23, 10.1016/j.engstruct.2014.02.037I. Gomez, A. Kanvinde, C. Smith Exposed Column Base Connections Subjected to Axial Compression and Flexure American Institute of Steel Construction, AISC, Chicago, IL USA (2010)T. Falborski, A.S. Hassan, A.M. Kanvinde Column base fixity in steel moment frames: observations from instrumented buildings J. Constr. Steel Res., 168 (2020), Article 105993, 10.1016/j.jcsr.2020.105993A.S. Hassan, B. Song, C. Galasso, A. Kanvinde Seismic Performance of Exposed Column–Base Plate Connections with Ductile Anchor Rods J. Struct. Eng., 148 (2022), Article 04022028, 10.1061/(ASCE)ST.1943-541X.0003298C.A. Trautner, T. Hutchinson, P.R. Grosser, J.F. Silva Investigation of steel column–baseplate connection details incorporating ductile anchors J. Struct. Eng., 143 (2017), Article 04017074, 10.1061/(ASCE)ST.1943-541X.0001759A. Picard, D. Beaulieu Behaviour of a simple column base connection Can. J. Civ. Eng., 12 (1985), pp. 126-136, 10.1139/l85-013R.E. Melchers Column-base response under applied moment J. Constr. Steel Res., 23 (1992), pp. 127-143, 10.1016/0143-974X(92)90040-LK.K. Hon, R.E. Melchers Experimental behaviour of steel column bases J. Constr. Steel Res., 9 (1988), pp. 35-50, 10.1016/0143-974X(88)90055-7F. Kavoura, B. Gencturk, M. Dawood Evaluation of Existing Provisions for Design of “Pinned” Column Base-Plate Connections (2018), 10.1016/j.jcsr.2018.05.030F. Kavoura, B. Gencturk, M. Dawood, M. Gurbuz Influence of base-plate connection stiffness on the design of low-rise metal buildings J. Constr. Steel Res., 115 (2015), pp. 169-178, 10.1016/j.jcsr.2015.08.005F. Kavoura, B. Gencturk, M. Dawood Reversed cyclic behavior of column-to-foundation connections in low-rise metal buildings J. Struct. Eng., 143 (2017), Article 04017095, 10.1061/(ASCE)ST.1943-541X.0001821C.G. Salmon, L. Schenker, B.G. Johnston Moment-rotation characteristics of column anchorages Trans. Am. Soc. Civ. Eng., 122 (1957), pp. 132-154, 10.1061/TACEAT.0007496J.Ch. Ermopoulos, G.N. Stamatopoulos Mathematical modelling of column base plate connections J. Constr. Steel Res., 36 (1996), pp. 79-100, 10.1016/0143-974X(95)00011-JR.M. Drake, S.J. Elkin Beam-column base plate design-LRFD method Engl. J., 36 (1999), pp. 16-38A.M. Kanvinde, P. Higgins, R.J. Cooke, J. Perez, J. Higgins Column base connections for hollow steel sections: seismic performance and strength models J. Struct. Eng., 141 (2015), Article 04014171, 10.1061/(ASCE)ST.1943-541X.0001136M. Dumas, D. Beaulieu, A. Picard Characterization equations for steel column base connections Can. J. Civ. Eng., 33 (2006), pp. 409-420, 10.1139/l05-054H. Díaz, E. Nuñez, C. Oyarzo-Vera Monotonic response of exposed base plates of columns: numerical study and a new design method Metals, 220 (2020), p. 396, 10.3390/met10030396M. Latour, G. Rizzano A theoretical model for predicting the rotational capacity of steel base joints J. Constr. Steel Res., 91 (2013), pp. 89-99, 10.1016/j.jcsr.2013.08.009P. Torres Rodas, Z. Farzin, K. Amit Hysteretic model for exposed column–base connections J. Struct. Eng., 142 (2016), Article 04016137, 10.1061/(ASCE)ST.1943-541X.0001602G.N. Stamatopoulos, J.Ch. Ermopoulos Experimental and analytical investigation of steel column bases J. Constr. Steel Res., 67 (2011), pp. 1341-1357, 10.1016/j.jcsr.2011.03.007G. Abdollahzadeh, M. Ghobadi Mathematical modeling of column-base connections under monotonic loading Civ. Eng. Infrastruct. J., 47 (2014), pp. 255-272, 10.7508/ceij.2014.02.008A. Mohabeddine, Y.W. Koudri, J.A.F.O. Correia, J.M. Castro Rotation capacity of steel members for the seismic assessment of steel buildings Eng. Struct., 244 (2021), Article 112760, 10.1016/j.engstruct.2021.112760D.G. Lignos, H. Krawinkler Deterioration modeling of steel components in support of collapse prediction of steel moment frames under earthquake loading J. Struct. Eng., 137 (2011), pp. 1291-1302, 10.1061/(ASCE)ST.1943-541X.0000376Y.-C. You, D. Lee Development of improved exposed column-base plate strong-axis joints of low-rise steel buildings J. Constr. Steel Res., 169 (2020), Article 106062, 10.1016/j.jcsr.2020.106062C.A. Trautner, T. Hutchinson, P.R. Grosser, J.F. Silva Effects of detailing on the cyclic behavior of steel baseplate connections designed to promote anchor yielding J. Struct. Eng., 142 (2016), Article 04015117, 10.1061/(ASCE)ST.1943-541X.0001361CEN Eurocode 3: Design of steel structures - Part 1–8: Design of joints (EN 1993-1-8 :2005), Brussels European Comitee for Standarization (2005)S. Demir, M. Husem, S. Pul Failure analysis of steel column-RC base connections under lateral cyclic loading Struct. Eng. Mech., 50 (2014), pp. 459-469, 10.12989/sem.2014.50.4.459J.-H. Choi, Y. Choi An experimental study on inelastic behavior for exposed-type steel column bases under three-dimensional loadings J. Mech. Sci. Technol., 27 (2013), pp. 747-759, 10.1007/s12206-012-0901-xM. Fahmy, B. Stojadinovic, S.C. Goel Analytical and experimental studies on the seismic response of steel column bases, in: Vancouver, Canadá (1999), pp. 245-250J.J. Burda, A. Itani Studies of Seismic Behavior of Steel Base Plates CCEER 99-7, Center for Civil Engineering Earthquake Research (CEER), Reno, Nevada, USA (1999)A.T. Wheeler, M.J. Clarke, G.J. Hancock, T.M. Murray Design model for bolted moment end plate connections joining rectangular hollow sections J. Struct. Eng., 124 (1998), pp. 164-173, 10.1061/(ASCE)0733-9445(1998)124:2(164)F. Wald, I. Simek, Z. Sokol, J. Seifer The column-base stiffness tests, v semi-rigid behaviour of civil engineering structural connections Proc. Second State Art Workshop, Brussels (1994), pp. 273-282D.P. Thambiratnam, P. Paramasivam Base plates under axial loads and moments J. Struct. Eng., 112 (1986), pp. 1166-1181, 10.1061/(ASCE)0733-9445(1986)112:5(1166)S. Chatterjee, A.S. Hadi, Regression Analysis by Example, Wiley, Somerset, 2015. https://public.ebookcentral.proquest.com/choice/publicfullrecord.aspx?p=918623&entityid=urn:mace:eduserv.org.uk:athens:provider:liv.ac.uk (accessed March 9, 2022).M. Aladsani, H.V. Burton, S. Abdullah, J. Wallace Explainable machine learning model for predicting drift capacity of reinforced concrete walls ACI Struct. J., 119 (2022), 10.14359/51734484H. Sun, H.V. Burton, H. Huang Machine learning applications for building structural design and performance assessment: state-of-the-art review J. Build. Eng., 33 (2021), Article 101816, 10.1016/j.jobe.2020.101816T. Obuchi, Y. Kabashima Cross validation in LASSO and its acceleration J. Stat. Mech. Theory Exp., 2016 (2016), Article 053304, 10.1088/1742-5468/2016/05/053304A.B. Kabir, A. Hasan, A.M. Billah Failure mode identification of column base plate connection using data-driven machine learning techniques Eng. Struct., 240 (2021), Article 112389, 10.1016/j.engstruct.2021.112389D. Nettleton Selection of Variables and Factor Derivation Commer. Data Min., Elsevier, in (2014), pp. 79-104, 10.1016/B978-0-12-416602-8.00006-6Simple Linear Regression, in: Regres. Anal. Ex., John Wiley & Sons, Inc., Hoboken, NJ, USA (2006), pp. 21-51, 10.1002/0470055464.ch2D.K. Dalal, M.J. Zickar Some common myths about centering predictor variables in moderated multiple Regression and polynomial Regression Organ. Res. Methods, 15 (2012), pp. 339-362, 10.1177/1094428111430540C.K. Ender, D. Tofighi Centering predictor variables in cross-sectional multilevel models: a new look at an old issue Psychol. Methods, 12 (2007), pp. 121-138, 10.1037/1082-989X.12.2.121J.A.S.P. Team JASP (Version 0.17.1) [Computer software] (2023)T.G. Wakjira, A. Abushanab, U. Ebead, W. Alnahhal FAI: fast, accurate, and intelligent approach and prediction tool for flexural capacity of FRP-RC beams based on super-learner machine learning model Mater. Today Commun., 33 (2022), Article 104461, 10.1016/j.mtcomm.2022.104461A.S. Hassan, P. Torres-Rodas, L. Giulietti, A. Kanvinde Strength characterization of exposed column base plates subjected to axial force and biaxial bending Eng. Struct., 237 (2021), Article 112165, 10.1016/j.engstruct.2021.112165http://purl.org/coar/resource_type/c_2df8fbb1ORIGINALVILLAR-SALINAS et al-2024-Estimation of Backbone model parameters for simulation of ECBP.pdfVILLAR-SALINAS et al-2024-Estimation of Backbone model parameters for simulation of ECBP.pdfPublished manuscriptapplication/pdf2390951https://repositorio.utb.edu.co/bitstream/20.500.12585/12740/1/VILLAR-SALINAS%20et%20al-2024-Estimation%20of%20Backbone%20model%20parameters%20for%20simulation%20of%20ECBP.pdf42a0302c9ea500361539208905da6c08MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12740/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12740/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTVILLAR-SALINAS et al-2024-Estimation of Backbone model parameters for simulation of ECBP.pdf.txtVILLAR-SALINAS et al-2024-Estimation of Backbone model parameters for simulation of ECBP.pdf.txtExtracted texttext/plain83241https://repositorio.utb.edu.co/bitstream/20.500.12585/12740/4/VILLAR-SALINAS%20et%20al-2024-Estimation%20of%20Backbone%20model%20parameters%20for%20simulation%20of%20ECBP.pdf.txt06f62de3e616051d998cf6e82958f40cMD54THUMBNAILVILLAR-SALINAS et al-2024-Estimation of Backbone model parameters for simulation of ECBP.pdf.jpgVILLAR-SALINAS et al-2024-Estimation of Backbone model parameters for simulation of ECBP.pdf.jpgGenerated Thumbnailimage/jpeg8213https://repositorio.utb.edu.co/bitstream/20.500.12585/12740/5/VILLAR-SALINAS%20et%20al-2024-Estimation%20of%20Backbone%20model%20parameters%20for%20simulation%20of%20ECBP.pdf.jpg6fa072fc4e3e4bf8bec3d1996642a03cMD5520.500.12585/12740oai:repositorio.utb.edu.co:20.500.12585/127402024-09-28 00:15:39.954Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=