Toward an adaptive protection scheme in active distribution networks: Intelligent approach fault detector
Conventional protection schemes have proven insufficient for the protection of Active Distribution Networks (ADN). Novel protection schemes with an adaptive approach should be developed to guarantee the protection of ADN under all their operating conditions. This paper proposes an ADN adaptive prote...
- Autores:
-
Marín-Quintero, J.
Orozco-Henao, C.
Percybrooks, W.S.
Vélez, J.C.
Montoya, Oscar Danilo
Gil-González, Walter
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/10032
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/10032
https://www.sciencedirect.com/science/article/abs/pii/S1568494620307778
- Palabra clave:
- Fault detector
Active distribution networks
Micro-grid
daptive protection
Machine learning
LEMB
- Rights
- closedAccess
- License
- http://purl.org/coar/access_right/c_14cb
id |
UTB2_a9b29fa9cccba5ef1ccd3e91e1fbae31 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/10032 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Toward an adaptive protection scheme in active distribution networks: Intelligent approach fault detector |
title |
Toward an adaptive protection scheme in active distribution networks: Intelligent approach fault detector |
spellingShingle |
Toward an adaptive protection scheme in active distribution networks: Intelligent approach fault detector Fault detector Active distribution networks Micro-grid daptive protection Machine learning LEMB |
title_short |
Toward an adaptive protection scheme in active distribution networks: Intelligent approach fault detector |
title_full |
Toward an adaptive protection scheme in active distribution networks: Intelligent approach fault detector |
title_fullStr |
Toward an adaptive protection scheme in active distribution networks: Intelligent approach fault detector |
title_full_unstemmed |
Toward an adaptive protection scheme in active distribution networks: Intelligent approach fault detector |
title_sort |
Toward an adaptive protection scheme in active distribution networks: Intelligent approach fault detector |
dc.creator.fl_str_mv |
Marín-Quintero, J. Orozco-Henao, C. Percybrooks, W.S. Vélez, J.C. Montoya, Oscar Danilo Gil-González, Walter |
dc.contributor.author.none.fl_str_mv |
Marín-Quintero, J. Orozco-Henao, C. Percybrooks, W.S. Vélez, J.C. Montoya, Oscar Danilo Gil-González, Walter |
dc.subject.keywords.spa.fl_str_mv |
Fault detector Active distribution networks Micro-grid daptive protection Machine learning |
topic |
Fault detector Active distribution networks Micro-grid daptive protection Machine learning LEMB |
dc.subject.armarc.none.fl_str_mv |
LEMB |
description |
Conventional protection schemes have proven insufficient for the protection of Active Distribution Networks (ADN). Novel protection schemes with an adaptive approach should be developed to guarantee the protection of ADN under all their operating conditions. This paper proposes an ADN adaptive protection methodology, which is based on an intelligent approach fault detector over locally available measurements. This approach uses Machine Learning (ML) based techniques to reduce the strong dependence of the adaptive protection schemes on the availability of communication systems and to determine if, over a fault condition, an Intelligent Electronic Device (IED) should operate considering the changes in operational conditions of an ADN. Additionally, the methodology takes into account different and remarkable recommendations for the use of ML techniques. The proposed methodology is validated on the modified IEEE 34-nodes test feeder. Additionally, it takes into consideration typical features of ADN and micro-grids like the load imbalance, reconfiguration, changes in impedance upstream from the micro-grid, and off-grid/on-grid operation modes. The results demonstrate the flexibility and simplicity of the methodology to determine the best accuracy performance among several ML models. Besides, they show the methodology’s versatility to find the suitable ML model for IEDs located on different zones of an ADN. The ease of design’s implementation, formulation of parameters, and promising test results indicate the potential for real-life applications. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-02-17T20:27:44Z |
dc.date.available.none.fl_str_mv |
2021-02-17T20:27:44Z |
dc.date.issued.none.fl_str_mv |
2021-01 |
dc.date.submitted.none.fl_str_mv |
2021-01-15 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasversion.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.citation.spa.fl_str_mv |
J. Marín-Quintero, J. Marín-Quintero, W.S. Percybrooks, Juan C. Vélez, Oscar Danilo Montoya, W. Gil-González. 2021. “Toward an adaptive protection scheme in active distribution networks: Intelligent approach fault detector”, ScienceDirect, 98 <https://doi.org/10.1016/j.asoc.2020.106839> |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/10032 |
dc.identifier.url.none.fl_str_mv |
https://www.sciencedirect.com/science/article/abs/pii/S1568494620307778 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.asoc.2020.106839 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Universidad Tecnológica de Bolívar |
identifier_str_mv |
J. Marín-Quintero, J. Marín-Quintero, W.S. Percybrooks, Juan C. Vélez, Oscar Danilo Montoya, W. Gil-González. 2021. “Toward an adaptive protection scheme in active distribution networks: Intelligent approach fault detector”, ScienceDirect, 98 <https://doi.org/10.1016/j.asoc.2020.106839> 10.1016/j.asoc.2020.106839 Universidad Tecnológica de Bolívar Repositorio Universidad Tecnológica de Bolívar |
url |
https://hdl.handle.net/20.500.12585/10032 https://www.sciencedirect.com/science/article/abs/pii/S1568494620307778 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_14cb |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/closedAccess |
eu_rights_str_mv |
closedAccess |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_14cb |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.place.spa.fl_str_mv |
Cartagena de Indias |
dc.source.spa.fl_str_mv |
Applied Soft Computing, 98, art. no. 106839 |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/10032/1/179.pdf https://repositorio.utb.edu.co/bitstream/20.500.12585/10032/2/license.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/10032/3/179.pdf.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/10032/4/179.pdf.jpg |
bitstream.checksum.fl_str_mv |
5b1fbcfc01f7e15b2d8064e054cb7913 e20ad307a1c5f3f25af9304a7a7c86b6 2f0b795f54f9e2795a54f44a68741e25 aab2da121fc24fff25d283ffd9447319 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021670117048320 |
spelling |
Marín-Quintero, J.1eb91321-8dee-42b2-99f8-3f2421582accOrozco-Henao, C.f3b2ff13-484c-4dac-bcb1-758cc0fd7af0Percybrooks, W.S.27c01209-2900-4575-9fdc-93278dc75e17Vélez, J.C.9ec23107-be55-4476-954b-4ffe296e0009Montoya, Oscar Danilo8a59ede1-6a4a-4d2e-abdc-d0afb14d4480Gil-González, Walter59bfddb4-d5c7-4bd3-8cbe-49b131a07e1c2021-02-17T20:27:44Z2021-02-17T20:27:44Z2021-012021-01-15J. Marín-Quintero, J. Marín-Quintero, W.S. Percybrooks, Juan C. Vélez, Oscar Danilo Montoya, W. Gil-González. 2021. “Toward an adaptive protection scheme in active distribution networks: Intelligent approach fault detector”, ScienceDirect, 98 <https://doi.org/10.1016/j.asoc.2020.106839>https://hdl.handle.net/20.500.12585/10032https://www.sciencedirect.com/science/article/abs/pii/S156849462030777810.1016/j.asoc.2020.106839Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarConventional protection schemes have proven insufficient for the protection of Active Distribution Networks (ADN). Novel protection schemes with an adaptive approach should be developed to guarantee the protection of ADN under all their operating conditions. This paper proposes an ADN adaptive protection methodology, which is based on an intelligent approach fault detector over locally available measurements. This approach uses Machine Learning (ML) based techniques to reduce the strong dependence of the adaptive protection schemes on the availability of communication systems and to determine if, over a fault condition, an Intelligent Electronic Device (IED) should operate considering the changes in operational conditions of an ADN. Additionally, the methodology takes into account different and remarkable recommendations for the use of ML techniques. The proposed methodology is validated on the modified IEEE 34-nodes test feeder. Additionally, it takes into consideration typical features of ADN and micro-grids like the load imbalance, reconfiguration, changes in impedance upstream from the micro-grid, and off-grid/on-grid operation modes. The results demonstrate the flexibility and simplicity of the methodology to determine the best accuracy performance among several ML models. Besides, they show the methodology’s versatility to find the suitable ML model for IEDs located on different zones of an ADN. The ease of design’s implementation, formulation of parameters, and promising test results indicate the potential for real-life applications.application/pdfengApplied Soft Computing, 98, art. no. 106839Toward an adaptive protection scheme in active distribution networks: Intelligent approach fault detectorinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Fault detectorActive distribution networksMicro-griddaptive protectionMachine learningLEMBinfo:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbCartagena de IndiasHatziargyriou, N. Microgrids: Architectures and Control (2013) Microgrids: Architectures and Control, pp. 1-317. Cited 333 times. http://onlinelibrary.wiley.com/book/10.1002/9781118720677 ISBN: 978-111872067-7; 978-111872068-4 doi: 10.1002/9781118720677Pec, J.A. (2010) , pp. 1189-1203. Integrating distributed generation into electric power systems: A review of drivers challenges and opportunities, 77 (200Ji, H., Wang, C., Li, P., Song, G., Yu, H., Wu, J. Quantified analysis method for operational flexibility of active distribution networks with high penetration of distributed generators (2019) Applied Energy, 239, pp. 706-714. Cited 25 times. http://www.elsevier.com/inca/publications/store/4/0/5/8/9/1/index.htt doi: 10.1016/j.apenergy.2019.02.008Chowdhury, S., Chowdhury, S.P., Crossley, P. Microgrids and active distribution networks (2009) Microgrids and Active Distribution Networks, pp. 1-298. Cited 457 times. http://dx.doi.org/10.1049/PBRN006E ISBN: 978-184919102-9; 978-184919014-5Mylavarapu, R., Venkata, S. Microgrid protection systems (2019) Micro-Grids - Applications, Solutions, Case Studies, and Demonstrations, vol 1 IntechOpen IntechOpen LondonAllen, W. Effects of wide-area control on the protection and operation of distribution networks (2009) 2009 Power Systems Conference: Advance Metering, Protection, Control, Communication, and Distributed Resources, PSC 2009, art. no. 5262330, pp. 222-231. Cited 7 times. ISBN: 978-142445248-4 doi: 10.1109/PSAMP.2009.5262330Friend, F., Johnson, G., Mugalian, B., Micu, C., Sufana, C., Siew, C., Patti, C., (...), Hartmann, W. Effect of distribution automation on protective relaying (2014) 2014 67th Annual Conference for Protective Relay Engineers, CPRE 2014, art. no. 6799002, pp. 193-228. Cited 2 times. doi: 10.1109/CPRE.2014.6799002Kar, S., Samantaray, S.R., Kar, S., Samantaray, S.R. A fuzzy rule base approach for intelligent protection of microgrids a fuzzy rule base approach for intelligent protection of microgrids (2015) Electr. Power Compon. Syst., 5008.Kar, S. A comprehensive protection scheme for micro-grid using fuzzy rule base approach (2016) Energy Syst.Palizban, O., Kauhaniemi, K., Guerrero, J.M. Microgrids in active network management - Part II: System operation, power quality and protection (Open Access) (2014) Renewable and Sustainable Energy Reviews, 36, pp. 440-451. Cited 74 times. doi: 10.1016/j.rser.2014.04.048Mishra, M., Panigrahi, R.R., Rout, P.K. A combined mathematical morphology and extreme learning machine techniques based approach to micro-grid protection (Open Access) (2019) Ain Shams Engineering Journal, 10 (2), pp. 307-318. Cited 9 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/724208/description#description doi: 10.1016/j.asej.2019.03.011Cepeda, C., Orozco-Henao, C., Percybrooks, W., Pulgarín-Rivera, J.D., Montoya, O.D., Gil-González, W., Vélez, J.C. Intelligent fault detection system for microgrids (Open Access) (2020) Energies, 13 (5), art. no. 1223. Cited 3 times. https://www.mdpi.com/1996-1073/13/5/1223 doi: 10.3390/en13051223Chen, C.I., Lan, C.K., Chen, Y.C., Chen, C.H., Chang, Y.R. Wavelet energy fuzzy neural network - based fault protection system for microgrid (2020)Kar, S., Samantaray, S.R., Zadeh, M.D. Data-Mining Model Based Intelligent Differential Microgrid Protection Scheme (2017) IEEE Systems Journal, 11 (2), pp. 1161-1169. Cited 88 times. http://www.ieee.org/products/onlinepubs/news/0806_01.html doi: 10.1109/JSYST.2014.2380432Mishra, D.P., Samantaray, S.R., Joos, G. A combined wavelet and data-mining based intelligent protection scheme for microgrid (2016) IEEE Transactions on Smart Grid, 7 (5), art. no. 7307183, pp. 2295-2304. Cited 136 times. doi: 10.1109/TSG.2015.2487501Habib, H.F. (2017) , pp. 1-8. M. El Hariri, A. Elsayed, O. Mohammed, Utilization of Supercapacitors in adaptive protection applications for resiliency against communication failures: a size and cost optimization case study, in: 2017 IEEE Industry Applications Society Annual MeetingTang, W.-J., Yang, H.-T. DataMining and neural networks based self-adaptive protection strategies for distribution systems with DGs and FCLs (Open Access) (2018) Energies, 11 (2), art. no. 426. Cited 9 times. http://www.mdpi.com/journal/energies/ doi: 10.3390/en11020426Golestan, S., Savaghebi, M., Beheshtaein, S., Guerrero, J.M., Cuzner, R. A modified secondary-control based fault current limiter for four-wire three phase DGs (2018) IEEE Trans. Ind. Electron., 46 (100), p. 1. Cited 2 times.Mumtaz, F., Bayram, I.S. Planning, Operation, and Protection of Microgrids: An Overview (Open Access) (2017) Energy Procedia, 107, pp. 94-100. Cited 30 times. http://sciencedirect.utb.elogim.com/science/journal/18766102 doi: 10.1016/j.egypro.2016.12.137Hosseini, S.A., Abyaneh, H.A., Sadeghi, S.H.H., Razavi, F., Nasiri, A. An overview of microgrid protection methods and the factors involved (2016) Renewable and Sustainable Energy Reviews, 64, pp. 174-186. Cited 77 times. doi: 10.1016/j.rser.2016.05.089Mahat, P., Chen, Z., Bak-Jensen, B., Bak, C.L. A simple adaptive overcurrent protection of distribution systems with distributed generation (2011) IEEE Transactions on Smart Grid, 2 (3), art. no. 5871328, pp. 428-437. Cited 284 times. doi: 10.1109/TSG.2011.2149550Núñez-Mata, O., Palma-Behnke, R., Valencia, F., Mendoza-Araya, P., Jiménez-Estévez, G. Adaptive protection system for microgrids based on a robust optimization strategy (Open Access) (2018) Energies, 11 (2), art. no. 308. Cited 15 times. http://www.mdpi.com/journal/energies/ doi: 10.3390/en11020308Prasad, C.D., Biswal, M., Abdelaziz, A.Y. Adaptive differential protection scheme for wind farm integrated power network (2020) Electric Power Systems Research, 187, art. no. 106452. Cited 4 times. https://www.journals.elsevier.com/electric-power-systems-research doi: 10.1016/j.epsr.2020.106452Alonso, M., Amaris, H., Alcala, D., Florez, D.M.R. Smart sensors for smart grid reliability (Open Access) (2020) Sensors (Switzerland), 20 (8), art. no. 2187. Cited 4 times. https://www.mdpi.com/1424-8220/20/8/2187/pdf doi: 10.3390/s20082187Zhai, H.F., Yang, M., Chen, B., Kang, N. Dynamic reconfiguration of three-phase unbalanced distribution networks (2018) International Journal of Electrical Power and Energy Systems, 99, pp. 1-10. Cited 29 times. doi: 10.1016/j.ijepes.2017.12.027Bhattacharya, S.K., Goswami, S.K. Electric Power Components and Systems Distribution Network Reconfiguration Considering Protection Coordination Constraints, vol. 5008 (2008)Bernabeu, E.E., Thorp, J.S., Centeno, V. Methodology for a security/dependability adaptive protection scheme based on data mining (Open Access) (2012) IEEE Transactions on Power Delivery, 27 (1), art. no. 6061930, pp. 104-111. Cited 58 times. doi: 10.1109/TPWRD.2011.2168831Gopalan, S.A., Sreeram, V., Iu, H.H.C. A review of coordination strategies and protection schemes for microgrids (2014) Renewable and Sustainable Energy Reviews, 32, pp. 222-228. Cited 91 times. doi: 10.1016/j.rser.2014.01.037Brearley, B.J., Prabu, R.R. A review on issues and approaches for microgrid protection (2017) Renewable and Sustainable Energy Reviews, 67, pp. 988-997. Cited 90 times. doi: 10.1016/j.rser.2016.09.047Hsieh, S.-C., Chen, C.-S., Tsai, C.-T., Hsu, C.-T., Lin, C.-H. Adaptive relay setting for distribution systems considering operation scenarios of wind generators (2014) IEEE Transactions on Industry Applications, 50 (2), art. no. 6567894, pp. 1356-1363. Cited 43 times. doi: 10.1109/TIA.2013.2274613Javadian, S.A.M., Haghifam, M.-R., Bathaee, S.M.T., Fotuhi Firoozabad, M. Adaptive centralized protection scheme for distribution systems with DG using risk analysis for protective devices placement (2013) International Journal of Electrical Power and Energy Systems, 44 (1), pp. 337-345. Cited 47 times. doi: 10.1016/j.ijepes.2012.07.056Habib, H.F., Mohammed, O. Decentralized Multi-Agent System for Protection and the Power Restoration Process in Microgrids (2017) IEEE Green Technologies Conference, art. no. 7923982, pp. 358-364. Cited 21 times. http://ieeexplore.ieee.org ISBN: 978-150904535-8 doi: 10.1109/GreenTech.2017.58Wehenkel, L. Machine-learning approaches to power-system security assessment (Open Access) (1997) IEEE Expert-Intelligent Systems and their Applications, 12 (5), pp. 60-72. Cited 77 times. doi: 10.1109/64.621229Shen, S., Lin, D., Wang, H., Hu, P., Jiang, K., Lin, D., He, B. An Adaptive Protection Scheme for Distribution Systems with DGs Based on Optimized Thevenin Equivalent Parameters Estimation (2017) IEEE Transactions on Power Delivery, 32 (1), pp. 411-419. Cited 51 times. doi: 10.1109/TPWRD.2015.2506155Banko, M., Brill, E. Scaling to very very large corpora for natural language disambiguation (2001) Proceedings of 39th Annual Meeting of the Association for Computational Linguistics, ACL 2001, pp. 26-33. Cited 299 times. Association for Computational LinguisticsKrawczyk, B. Learning from imbalanced data: open challenges and future directions (Open Access) (2016) Progress in Artificial Intelligence, 5 (4), pp. 221-232. Cited 472 times. http://www.springer.com/computer/database+management+%26+information+retrieval/journal/13748 doi: 10.1007/s13748-016-0094-0Samantaray, S.R. A data-mining model for protection of facts-based transmission line (2013) IEEE Transactions on Power Delivery, 28 (2), art. no. 6469192, pp. 612-618. Cited 42 times. doi: 10.1109/TPWRD.2013.2242205E, K., Dimensionality, M.A.C.A. Mueen a, Curse of Dimensionality, Encyclopedia of Machine Learning and Data Mining (2017) Springer BostonIguyon, I., Elisseeff, A. An introduction to variable and feature selection (2003) Journal of Machine Learning Research, 3, pp. 1157-1182. Cited 9494 times. http://jmlr.org/papers/volume3/guyon03a/guyon03a.pdfBengio, Y. Practical Recommendations for Gradient-Based Training of Deep Architectures, Neural Networks: Tricks of the Trade (2013) . Cited 175 times. SpringerVan Rossum, G., Drake, F.L. Python 3 Reference Manual (2009) . Cited 138 times. CreateSpace Scotts Valley, CAGuyon, I., Laboratories, T.B. A scaling law for the validation-set training-set size ratio (1997) AT & T Bell Laboratories, pp. 1-11. Cited 53 times. BerkeleyShahin, M.A., Maier, H.R., Jaksa, M.B. Data division for developing neural networks applied to geotechnical engineering (2004) Journal of Computing in Civil Engineering, 18 (2), pp. 105-114. Cited 212 times. doi: 10.1061/(ASCE)0887-3801(2004)18:2(105)Kumar, P., Kumar, V., Pratap, R. Design and verification of hardcore reconfigurable relay for islanding detection and subsequent mode adaptation of microgrid (2019) International Transactions on Electrical Energy Systems, 29 (4), art. no. e2807. Cited 6 times. http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2050-7038 doi: 10.1002/etep.2807Dikarev, P.V. Intelligent system current protection from short circuits (2019) , pp. 1-5. 2019 Int. Conf. Ind. Eng. Appl. Manuf.Distribution System Analysis Subcommittee IEEE 34 node test feeder (2001) . Cited 3 times.http://purl.org/coar/resource_type/c_2df8fbb1ORIGINAL179.pdf179.pdfAbstractapplication/pdf87241https://repositorio.utb.edu.co/bitstream/20.500.12585/10032/1/179.pdf5b1fbcfc01f7e15b2d8064e054cb7913MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/10032/2/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD52TEXT179.pdf.txt179.pdf.txtExtracted texttext/plain1711https://repositorio.utb.edu.co/bitstream/20.500.12585/10032/3/179.pdf.txt2f0b795f54f9e2795a54f44a68741e25MD53THUMBNAIL179.pdf.jpg179.pdf.jpgGenerated Thumbnailimage/jpeg71583https://repositorio.utb.edu.co/bitstream/20.500.12585/10032/4/179.pdf.jpgaab2da121fc24fff25d283ffd9447319MD5420.500.12585/10032oai:repositorio.utb.edu.co:20.500.12585/100322023-05-26 10:21:47.966Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo= |