Passivity-Based Control for Hydro-Turbine Governing Systems
In this paper an interconnection and damping assignment passivity-based control (IDA-PBC) applied to the hydro-Turbine governing systems (HTGS) is proposed to regulate the relative deviation of turbine speed in single machine infinite bus system. The passivity-based control (PBC) theory is selected...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2018
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/8864
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/8864
- Palabra clave:
- Hydro-Turbine governing systems (HTGS)
Interconnection and damping assignment passivity-based control (IDA-PBC)
Port-Hamiltonian (pH)
Single machine infinite bus
Damping
Dynamical systems
Hydraulic turbines
Time domain analysis
Globally asymptotically stability
Hydro turbine governing systems
Interconnection and damping assignment
Passivity based control
Port hamiltonians
Single machine infinite bus
Single machine infinite bus system
Time-domain simulations
Hamiltonians
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_a99cefd248cfc638ff8b4304d865a0cd |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/8864 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
Passivity-Based Control for Hydro-Turbine Governing Systems |
title |
Passivity-Based Control for Hydro-Turbine Governing Systems |
spellingShingle |
Passivity-Based Control for Hydro-Turbine Governing Systems Hydro-Turbine governing systems (HTGS) Interconnection and damping assignment passivity-based control (IDA-PBC) Port-Hamiltonian (pH) Single machine infinite bus Damping Dynamical systems Hydraulic turbines Time domain analysis Globally asymptotically stability Hydro turbine governing systems Interconnection and damping assignment Passivity based control Port hamiltonians Single machine infinite bus Single machine infinite bus system Time-domain simulations Hamiltonians |
title_short |
Passivity-Based Control for Hydro-Turbine Governing Systems |
title_full |
Passivity-Based Control for Hydro-Turbine Governing Systems |
title_fullStr |
Passivity-Based Control for Hydro-Turbine Governing Systems |
title_full_unstemmed |
Passivity-Based Control for Hydro-Turbine Governing Systems |
title_sort |
Passivity-Based Control for Hydro-Turbine Governing Systems |
dc.subject.keywords.none.fl_str_mv |
Hydro-Turbine governing systems (HTGS) Interconnection and damping assignment passivity-based control (IDA-PBC) Port-Hamiltonian (pH) Single machine infinite bus Damping Dynamical systems Hydraulic turbines Time domain analysis Globally asymptotically stability Hydro turbine governing systems Interconnection and damping assignment Passivity based control Port hamiltonians Single machine infinite bus Single machine infinite bus system Time-domain simulations Hamiltonians |
topic |
Hydro-Turbine governing systems (HTGS) Interconnection and damping assignment passivity-based control (IDA-PBC) Port-Hamiltonian (pH) Single machine infinite bus Damping Dynamical systems Hydraulic turbines Time domain analysis Globally asymptotically stability Hydro turbine governing systems Interconnection and damping assignment Passivity based control Port hamiltonians Single machine infinite bus Single machine infinite bus system Time-domain simulations Hamiltonians |
description |
In this paper an interconnection and damping assignment passivity-based control (IDA-PBC) applied to the hydro-Turbine governing systems (HTGS) is proposed to regulate the relative deviation of turbine speed in single machine infinite bus system. The passivity-based control (PBC) theory is selected because in the open-loop the HTGS has a port-Hamiltonian (pH) structure. The PBC theory takes advantage of the pH structure of the open-loop dynamical system to design a general control law, which preserves the passive structure in closedloop via interconnection and damping reassignment. Additionally, the PBC theory guarantees globally asymptotically stability in the sense of Lyapunov for the close-loop dynamical system. Time-domain simulations demonstrate the robustness and proper performance of the proposed methodology applied to the HTGS under different operative conditions. © 2018 IEEE. |
publishDate |
2018 |
dc.date.issued.none.fl_str_mv |
2018 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:32:31Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:32:31Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_c94f |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
dc.type.hasversion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Conferencia |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
Proceedings of the 2018 IEEE PES Transmission and Distribution Conference and Exhibition - Latin America, T and D-LA 2018 |
dc.identifier.isbn.none.fl_str_mv |
9781538658444 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/8864 |
dc.identifier.doi.none.fl_str_mv |
10.1109/TDC-LA.2018.8511641 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
57191493648 36449223500 55210940700 56919564100 |
identifier_str_mv |
Proceedings of the 2018 IEEE PES Transmission and Distribution Conference and Exhibition - Latin America, T and D-LA 2018 9781538658444 10.1109/TDC-LA.2018.8511641 Universidad Tecnológica de Bolívar Repositorio UTB 57191493648 36449223500 55210940700 56919564100 |
url |
https://hdl.handle.net/20.500.12585/8864 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.conferencedate.none.fl_str_mv |
18 September 2018 through 21 September 2018 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_16ec |
eu_rights_str_mv |
restrictedAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers Inc. |
publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers Inc. |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85056992138&doi=10.1109%2fTDC-LA.2018.8511641&partnerID=40&md5=c0edf8c59ba4454887b4e28af1eeb296 Scopus2-s2.0-85056992138 |
institution |
Universidad Tecnológica de Bolívar |
dc.source.event.none.fl_str_mv |
2018 IEEE PES Transmission and Distribution Conference and Exhibition - Latin America, T and D-LA |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/8864/1/MiniProdInv.png |
bitstream.checksum.fl_str_mv |
0cb0f101a8d16897fb46fc914d3d7043 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021660803596288 |
spelling |
2020-03-26T16:32:31Z2020-03-26T16:32:31Z2018Proceedings of the 2018 IEEE PES Transmission and Distribution Conference and Exhibition - Latin America, T and D-LA 20189781538658444https://hdl.handle.net/20.500.12585/886410.1109/TDC-LA.2018.8511641Universidad Tecnológica de BolívarRepositorio UTB57191493648364492235005521094070056919564100In this paper an interconnection and damping assignment passivity-based control (IDA-PBC) applied to the hydro-Turbine governing systems (HTGS) is proposed to regulate the relative deviation of turbine speed in single machine infinite bus system. The passivity-based control (PBC) theory is selected because in the open-loop the HTGS has a port-Hamiltonian (pH) structure. The PBC theory takes advantage of the pH structure of the open-loop dynamical system to design a general control law, which preserves the passive structure in closedloop via interconnection and damping reassignment. Additionally, the PBC theory guarantees globally asymptotically stability in the sense of Lyapunov for the close-loop dynamical system. Time-domain simulations demonstrate the robustness and proper performance of the proposed methodology applied to the HTGS under different operative conditions. © 2018 IEEE.Departamento Administrativo de Ciencia, Tecnología e Innovación, COLCIENCIAS Department of Science, Information Technology and Innovation, Queensland GovernmentIEEE Peru Section;IEEE Power and Energy SocietyFINANCIAL SUPPORT This work was partially supported by the Administrative Department of Science, Technology and Innovation of Colombia (COLCIENCIAS) through the National Scholarship Program, calling contest 727-2015, and the PhD program in Engineering of la Universidad Tecnológica de Pereira.Recurso electrónicoapplication/pdfengInstitute of Electrical and Electronics Engineers Inc.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85056992138&doi=10.1109%2fTDC-LA.2018.8511641&partnerID=40&md5=c0edf8c59ba4454887b4e28af1eeb296Scopus2-s2.0-850569921382018 IEEE PES Transmission and Distribution Conference and Exhibition - Latin America, T and D-LAPassivity-Based Control for Hydro-Turbine Governing Systemsinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fHydro-Turbine governing systems (HTGS)Interconnection and damping assignment passivity-based control (IDA-PBC)Port-Hamiltonian (pH)Single machine infinite busDampingDynamical systemsHydraulic turbinesTime domain analysisGlobally asymptotically stabilityHydro turbine governing systemsInterconnection and damping assignmentPassivity based controlPort hamiltoniansSingle machine infinite busSingle machine infinite bus systemTime-domain simulationsHamiltonians18 September 2018 through 21 September 2018Gil-González, WalterGarces A.Escobar Mejía, AndrésMontoya O.D.(1992) IEEE Trans. Power Syst, 7 (1), pp. 167-179. , IEEE working group report Hydraulic turbine and turbine control models for system dynamic studies FebJiang, J., Design of an optimal robust governor for hydraulic turbine generating units (1995) IEEE Trans. Energy Convers, 10 (1), pp. 188-194. , MarBabunski, D., Tuneski, A., (2003) Modelling and Design of Hydraulic Turbine-governor System, "" in 3rd IFAC Workshop on Automatic Systems for Building the Infrastructure in Developing Countries, 36 (7), pp. 263-267. , Istanbul, Turkey, June 2003Chen, D., Ding, C., Ma, X., Yuan, P., Ba, D., Nonlinear dynamical analysis of hydro-Turbine governing system with a surge tank (2013) Appl. Math. Modell, 37 (14), pp. 7611-7623. , AugJiang, C., Ma, Y., Wang, C., PID controller parameters optimization of hydro-Turbine governing systems using deterministic-chaoticmutation evolutionary programming (DCMEP) (2006) Energy Convers. Manage, 47 (9), pp. 1222-1230Liu, Y.-J., Fang, Y.-J., Zhu, X.-M., Modeling of hydraulic turbine systems based on a Bayesian-Gaussian neural network driven by sliding window data (2009) Journal of Zhejiang University SCIENCE C, 11 (1), p. 56. , DecGuan, C., Pan, S., Adaptive sliding mode control of electrohydraulic system with nonlinear unknown parameters (2008) Control Eng. Pract, 16 (11), pp. 1275-1284. , NovCerman, O., Huek, P., Adaptive fuzzy sliding mode control for electro-hydraulic servo mechanism (2012) Expert Syst. Appl, 39 (11), pp. 10269-10277. , SepChen, D., Ding, C., Do, Y., Ma, X., Zhao, H., Wang, Y., Nonlinear dynamic analysis for a francis hydro-Turbine governing system and its control (2014) J. Franklin Inst, 351 (9), pp. 4596-4618. , SepLiang, J., Yuan, X., Yuan, Y., Chen, Z., Li, Y., Nonlinear dynamic analysis and robust controller design for francis hydraulic turbine regulating system with a straight-Tube surge tank (2017) Mech. Syst. Sig. Process, 85, pp. 927-946. , FebXu, T., Zhang, L., Zeng, Y., Qian, J., Hamiltonian model of hydro turbine with sharing sommon conduit 2012 Asia-Pacific Power and Energy Engineering Conference, March 2012, pp. 1-5Zeng, Y., Zhang, L., Guo, Y., Qian, J., Zhang, C., The generalized hamiltonian model for the shafting transient analysis of the hydro turbine generating sets (2014) Nonlinear Dyn, 76 (4), pp. 1921-1933. , JunLi, H., Chen, D., Zhang, H., Wu, C., Wang, X., Hamiltonian analysis of a hydro-energy generation system in the transient of sudden load increasing (2017) Appl. Energy, 185, pp. 244-253Ling, D., Tao, Y., An analysis of the hopf bifurcation in a hydroturbine governing system with saturation (2006) IEEE Trans. Energy Convers, 21 (2), pp. 512-515. , JuneGao, Y., Lu, G., Wang, Z., Passivity analysis of uncertain singularly perturbed systems (2010) IEEE Trans. Circuits Syst. II Express Briefs, 57 (6), pp. 486-490. , JuneSanchez, S., Ortega, R., Grio, R., Bergna, G., Molinas, M., Conditions for existence of equilibria of systems with constant power loads (2014) IEEE Trans. Circuits Syst. i Regul. Pap, 61 (7), pp. 2204-2211. , JulyNageshrao, S.P., Lopes, G.A.D., Jeltsema, D., Babuka, R., Porthamiltonian systems in adaptive and learning control: A survey (2016) IEEE Trans. Autom. Control, 61 (5), pp. 1223-1238. , MayMontoya, O.D., Gil-Gonźalez, W., Garćes, A., Espinosa-Erez, G., Indirect IDA-PBC for active and reactive power support in distribution networks using SMES systems with PWM-CSC (2018) Journal of Energy Storage, 17, pp. 261-271Ortega, R., Schaft Der A.Van, Maschke, B., Escobar, G., Interconnection and damping assignment passivity-based control of port-controlled hamiltonian systems (2002) Automatica, 38 (4), pp. 585-596Gil-Gonźalez, W., Montoya, O.D., Garćes, A., Espinosa-Erez, G., IDA-Passivity-Based Control for Superconducting Magnetic Energy Storage with PWM-CSC 2017 Ninth Annual IEEE Green Technologies Conference (GreenTech), pp. 89-95. , March 2017Montoya, O.D., Gil-Gonzlez, W., Serra, F.M., Pbc approach for smes devices in electric distribution networks (2018) IEEE Transactions on Circuits and Systems II: Express Briefs, pp. 1-1http://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/8864/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/8864oai:repositorio.utb.edu.co:20.500.12585/88642023-05-26 10:23:26.65Repositorio Institucional UTBrepositorioutb@utb.edu.co |