Machine learning models for early dengue severity prediction

Infection by dengue-virus is prevalent and a public health issue in tropical countries worldwide. Also, in developing nations, child populations remain at risk of adverse events following an infection by dengue virus, as the necessary care is not always accessible, or health professionals are withou...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2016
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/8998
Acceso en línea:
https://hdl.handle.net/20.500.12585/8998
Palabra clave:
Children
Dengue
Logistic regression
Machine learning
Naive bayes
PICU
Severity
SVM
Artificial intelligence
Health risks
Intensive care units
Learning algorithms
Pediatrics
Viruses
Children
Dengue
Logistic regressions
Naive bayes
PICU
Severity
Learning systems
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_a99622ded58cbf305731b5115c2bbfdb
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/8998
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Machine learning models for early dengue severity prediction
title Machine learning models for early dengue severity prediction
spellingShingle Machine learning models for early dengue severity prediction
Children
Dengue
Logistic regression
Machine learning
Naive bayes
PICU
Severity
SVM
Artificial intelligence
Health risks
Intensive care units
Learning algorithms
Pediatrics
Viruses
Children
Dengue
Logistic regressions
Naive bayes
PICU
Severity
Learning systems
title_short Machine learning models for early dengue severity prediction
title_full Machine learning models for early dengue severity prediction
title_fullStr Machine learning models for early dengue severity prediction
title_full_unstemmed Machine learning models for early dengue severity prediction
title_sort Machine learning models for early dengue severity prediction
dc.contributor.editor.none.fl_str_mv Escalante H.J.
Montes-y-Gomez M.
Segura A.
de Dios Murillo J.
dc.subject.keywords.none.fl_str_mv Children
Dengue
Logistic regression
Machine learning
Naive bayes
PICU
Severity
SVM
Artificial intelligence
Health risks
Intensive care units
Learning algorithms
Pediatrics
Viruses
Children
Dengue
Logistic regressions
Naive bayes
PICU
Severity
Learning systems
topic Children
Dengue
Logistic regression
Machine learning
Naive bayes
PICU
Severity
SVM
Artificial intelligence
Health risks
Intensive care units
Learning algorithms
Pediatrics
Viruses
Children
Dengue
Logistic regressions
Naive bayes
PICU
Severity
Learning systems
description Infection by dengue-virus is prevalent and a public health issue in tropical countries worldwide. Also, in developing nations, child populations remain at risk of adverse events following an infection by dengue virus, as the necessary care is not always accessible, or health professionals are without means to cheaply and reliably predict how likely is for a patient to experience severe Dengue. Here, we propose a classification model based on Machine Learning techniques, which predicts whether or not a pediatric patient will be admitted into the pediatric Intensive Care Unit, as a proxy for Dengue severity. Different Machine Learning techniques were trained and validated using Stratified 5-Fold Cross-Validation, and the best model was evaluated on a disjoint test set. Cross-Validation results showed an SVM with Gaussian Kernel outperformed the other models considered, with an 0.81 Receiver Operating Characteristic Area Under the Curve (ROC AUC) score. Subsequent results over the test set showed a 0.75 ROC AUC score. Validation and test results are promising and support further research and development. © Springer International Publishing AG 2016.
publishDate 2016
dc.date.issued.none.fl_str_mv 2016
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:32:44Z
dc.date.available.none.fl_str_mv 2020-03-26T16:32:44Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_c94f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.hasVersion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Conferencia
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 10022 LNAI, pp. 247-258
dc.identifier.isbn.none.fl_str_mv 9783319479545
dc.identifier.issn.none.fl_str_mv 03029743
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/8998
dc.identifier.doi.none.fl_str_mv 10.1007/978-3-319-47955-2_21
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 55782426500
57203489700
55782490400
identifier_str_mv Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 10022 LNAI, pp. 247-258
9783319479545
03029743
10.1007/978-3-319-47955-2_21
Universidad Tecnológica de Bolívar
Repositorio UTB
55782426500
57203489700
55782490400
url https://hdl.handle.net/20.500.12585/8998
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.conferencedate.none.fl_str_mv 23 November 2016 through 25 November 2016
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessRights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer Verlag
publisher.none.fl_str_mv Springer Verlag
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-84994130153&doi=10.1007%2f978-3-319-47955-2_21&partnerID=40&md5=65a9cbf885b81a5735f5593296b0d244
institution Universidad Tecnológica de Bolívar
dc.source.event.none.fl_str_mv 15th Ibero-American Conference on Advances in Artificial Intelligence, IBERAMIA 2016
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/8998/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021791840993280
spelling Escalante H.J.Montes-y-Gomez M.Segura A.de Dios Murillo J.Caicedo-Torres W.Paternina Á.Pinzón H.2020-03-26T16:32:44Z2020-03-26T16:32:44Z2016Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 10022 LNAI, pp. 247-258978331947954503029743https://hdl.handle.net/20.500.12585/899810.1007/978-3-319-47955-2_21Universidad Tecnológica de BolívarRepositorio UTB557824265005720348970055782490400Infection by dengue-virus is prevalent and a public health issue in tropical countries worldwide. Also, in developing nations, child populations remain at risk of adverse events following an infection by dengue virus, as the necessary care is not always accessible, or health professionals are without means to cheaply and reliably predict how likely is for a patient to experience severe Dengue. Here, we propose a classification model based on Machine Learning techniques, which predicts whether or not a pediatric patient will be admitted into the pediatric Intensive Care Unit, as a proxy for Dengue severity. Different Machine Learning techniques were trained and validated using Stratified 5-Fold Cross-Validation, and the best model was evaluated on a disjoint test set. Cross-Validation results showed an SVM with Gaussian Kernel outperformed the other models considered, with an 0.81 Receiver Operating Characteristic Area Under the Curve (ROC AUC) score. Subsequent results over the test set showed a 0.75 ROC AUC score. Validation and test results are promising and support further research and development. © Springer International Publishing AG 2016.Recurso electrónicoapplication/pdfengSpringer Verlaghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84994130153&doi=10.1007%2f978-3-319-47955-2_21&partnerID=40&md5=65a9cbf885b81a5735f5593296b0d24415th Ibero-American Conference on Advances in Artificial Intelligence, IBERAMIA 2016Machine learning models for early dengue severity predictioninfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fChildrenDengueLogistic regressionMachine learningNaive bayesPICUSeveritySVMArtificial intelligenceHealth risksIntensive care unitsLearning algorithmsPediatricsVirusesChildrenDengueLogistic regressionsNaive bayesPICUSeverityLearning systems23 November 2016 through 25 November 2016Anders, K.L., Nguyet, N.M., Van Vinh Chau, N., Hung, N.T., Thuy, T.T., Lien, L.B., Farrar, J., Simmons, C.P., Epidemiological factors associated with dengue shock syndrome and mortality in hospitalized dengue patients in Ho Chi Minh City, Vietnam (2011) Am. J. Trop. Med. Hyg., 84 (1), pp. 127-134. , http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3005500/Avirutnan, P., Punyadee, N., Noisakran, S., Komoltri, C., Thiemmeca, S., Auethavornanan, K., Jairungsri, A., Malasit, P., Vascular leakage in severe dengue virus infections: A potential role for the nonstructural viral protein ns1 and complement (2006) J. Infect. Dis, 193 (8), pp. 1078-1088Bayes, M., Price, M., (1763) An Essay Towards Solving a Problem in the Doctrine of Chances, 53, pp. 370-418. , http://rstl.royalsocietypublishing.org/content/53/370.short, By the Late Rev. Mr. Bayes, F.R.S. communicated by Mr. Price, in a letter to John Canton, A.M.F.R.S. Philos. TransBhatt, S., Gething, P.W., Brady, O.J., Messina, J.P., Farlow, A.W., Moyes, C.L., Drake, J.M., Hay, S.I., The global distribution and burden of dengue (2013) Nature, 496 (7446), pp. 504-507. , http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3651993/Cao, X.T.P., Ngo, T.N., Wills, B., Kneen, R., Nguyen, T.T.H., Ta, T.T.M., Tran, T.T.H., Farrar, J.J., Evaluation of the world health organization standard tourniquet test and a modified tourniquet test in the diagnosis of dengue infection in Vietnam (2002) Trop. Med. Int. Health, 7 (2), pp. 125-132Carrasco, L.R., Leo, Y.S., Cook, A.R., Lee, V.J., Thein, T.L., Go, C.J., Lye, D.C., Predictive tools for severe dengue conforming to world health organization 2009 criteria (2014) Plos Negl. Trop. Dis, 8 (7). , http://dx.doi.org/10.1371Cortes, C., Vapnik, V., Support-vector networks (1995) Mach. Learn, 20 (3), pp. 273-297. , http://dx.doi.org/10.1007/BF00994018Domingos, P., Pazzani, M., On the optimality of the simple bayesian classifier under zero-one loss (1997) Mach. Learn, 29 (2-3), pp. 03-130. , http://dx.doi.org/10.1023/A:1007413511361Gomes, A.L.V., Wee, L.J.K., Khan, A.M., Gil, L.H.V.G., Marques, E.T.A.J., Calzavara-Silva, C.E., Tan, T.W., Classification of dengue fever patients based on gene expression data using support vector machines (2010) Plos One, 5 (6)Guzman, M., Alvarez, M., Halstead, S., Secondary infection as a risk factor for dengue hemorrhagic fever/dengue shock syndrome: An historical perspective and role of antibody-dependent enhancement of infection (2013) Arch. Virol, 158 (7), pp. 1445-1459. , http://dx.doi.org/10.1007/s00705-013-1645-3Huy, N.T., Thao, N.T.H., Ha, T.T.N., Lan, N.T.P., Nga, P.T.T., Thuy, T.T., Tuan, H.M., Hirayama, K., Development of clinical decision rules to predict recurrent shock in dengue (2013) Crit. Care, 17 (6), pp. R280-R280. , http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4057383/Kalayanarooj, S., Nimmannitya, S., Is dengue severity related to nutritional status? (2005) SE Asian J. Trop. Med. Public Health, 36 (2), pp. 378-384Keerthi, S.S., Lin, C.J., Asymptotic behaviors of support vector machines with gaussian kernel (2003) Neural Comput, 15 (7), pp. 1667-1689. , http://dx.doi.org/10.1162/089976603321891855Kesorn, K., Ongruk, P., Chompoosri, J., Phumee, A., Thavara, U., Tawatsin, A., Siriyasatien, P., Morbidity rate prediction of dengue hemorrhagic fever (DHF) using the support vector machine and the aedes aegypti infection rate in similar climates and geographical areas (2015) Plos ONE, 10 (5). , http://dx.doi.org/10.1371/journal.pone.0125049Libraty, D.H., Endy, T.P., Houng, H.S.H., Green, S., Kalayanarooj, S., Suntayakorn, S., Chansiriwongs, W., Rothman, A.L., Differing influences of virus burden and immune activation on disease severity in secondary dengue-3 virus infections (2002) J. Infect. Dis, 185 (9), pp. 1213-1221Libraty, D.H., Young, P.R., Pickering, D., Endy, T.P., Kalayanarooj, S., Green, S., Vaughn, D.W., Rothman, A.L., High circulating levels of the dengue virus nonstructural protein NS1 early in dengue illness correlate with the development of dengue hemorrhagic fever (2002) J. Infect. Dis, 186 (8), pp. 1165-1168Machado, C.R., Machado, E.S., Rohloff, R.D., Azevedo, M., Campos, D.P., de Oliveira, R.B., Brasil, P., Is pregnancy associated with severe dengue? A review of data from the Rio de Janeiro surveillance information system (2013) Plos Negl. Trop. Dis, 7 (5)McCullagh, P., Nelder, J., (1989) Generalized Linear Models, , https://books.google.co.uk/books?id=h9kFH2FfBkC, Chapman & Hall/CRC Monographs on Statistics & Applied Probability, 2nd edn. Taylor & Francis, AbingdonMoraes, G.H., de Fatima Duarte, E., Duarte, E.C., Determinants of mortality from severe dengue in Brazil: A population-based case-control study (2013) Am. J. Trop. Med. Hyg, 88 (4), pp. 670-676Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Duchesnay, E., Scikit-learn: Machine learning in python (2011) J. Mach. Learn. Res, 12, pp. 2825-2830Phuong, C.X.T., Nhan, N.T., Kneen, R., Thuy, P.T.T., van Thien, C., Nga, N.T.T., Thuy, T.T., Wills, B., Clinical diagnosis and assessment of severity of confirmed dengue infections in vietnamese children: Is the world health organization classification system helpful (2004) Am. J. Trop. Med. Hyg, 70 (2), pp. 172-179Potts, J.A., Gibbons, R.V., Rothman, A.L., Srikiatkhachorn, A., Thomas, S.J., Supradish, P.O., Lemon, S.C., Kalayanarooj, S., Prediction of dengue disease severity among pediatric thai patients using early clinical laboratory indicators (2010) Plos Negl. Trop. Dis, 4 (8)Shekhar, K.C., Huat, O.L., Epidemiology of dengue/dengue hemorrhagic fever in Malaysia-a retrospective epidemiological study 1973–1987. Part II: Dengue fever (DF). Asia Pac (1992) J. Public Health, 6 (3), pp. 126-133Tanner, L., Schreiber, M., Low, J.G.H., Ong, A., Tolfvenstam, T., Lai, Y.L., Ng, L.C., Ooi, E.E., Decision tree algorithms predict the diagnosis and outcome of dengue fever in the early phase of illness (2008) Plos Negl. Trop. Dis, 2 (3). , http://dx.plos.org/10.1371Trung, D.T., Thao, L.T.T., Dung, N.M., Ngoc, T.V., Hien, T.T., Chau, N.V.V., Wolbers, M., Wills, B., Clinical features of dengue in a large vietnamese cohort: Intrinsically lower platelet counts and greater risk for bleeding in adults than children (2012) Plos Negl. Trop. Dis, 6 (6)Vaughn, D.W., Green, S., Kalayanarooj, S., Innis, B.L., Nimmannitya, S., Suntayakorn, S., Endy, T.P., Nisalak, A., Dengue viremia titer, antibody response pattern, and virus serotype correlate with disease severity (2000) J. Infect. Dis., 181 (1), pp. 2-9http://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/8998/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/8998oai:repositorio.utb.edu.co:20.500.12585/89982021-02-01 20:05:10.451Repositorio Institucional UTBrepositorioutb@utb.edu.co