Optimal Integration of Distributed Generators into DC Microgrids Using a Hybrid Methodology: Genetic and Vortex Search Algorithms

This paper addresses the problem of optimal location and sizing of distributed generators (DGs) in direct current (DC) grids. To solve it, we propose an optimization approach with an objective function that aims to reduce power losses due to energy transport, while considering all the constraints th...

Full description

Autores:
Grisales-Noreña, L.F.
Montoya-Giraldo, O.D.
Gil-González, W.
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12421
Acceso en línea:
https://hdl.handle.net/20.500.12585/12421
Palabra clave:
Microgrid;
DC-DC Converter;
Electric Potential
LEMB
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_a8fa8533df000d2d400ecba72bb81044
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12421
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Optimal Integration of Distributed Generators into DC Microgrids Using a Hybrid Methodology: Genetic and Vortex Search Algorithms
title Optimal Integration of Distributed Generators into DC Microgrids Using a Hybrid Methodology: Genetic and Vortex Search Algorithms
spellingShingle Optimal Integration of Distributed Generators into DC Microgrids Using a Hybrid Methodology: Genetic and Vortex Search Algorithms
Microgrid;
DC-DC Converter;
Electric Potential
LEMB
title_short Optimal Integration of Distributed Generators into DC Microgrids Using a Hybrid Methodology: Genetic and Vortex Search Algorithms
title_full Optimal Integration of Distributed Generators into DC Microgrids Using a Hybrid Methodology: Genetic and Vortex Search Algorithms
title_fullStr Optimal Integration of Distributed Generators into DC Microgrids Using a Hybrid Methodology: Genetic and Vortex Search Algorithms
title_full_unstemmed Optimal Integration of Distributed Generators into DC Microgrids Using a Hybrid Methodology: Genetic and Vortex Search Algorithms
title_sort Optimal Integration of Distributed Generators into DC Microgrids Using a Hybrid Methodology: Genetic and Vortex Search Algorithms
dc.creator.fl_str_mv Grisales-Noreña, L.F.
Montoya-Giraldo, O.D.
Gil-González, W.
dc.contributor.author.none.fl_str_mv Grisales-Noreña, L.F.
Montoya-Giraldo, O.D.
Gil-González, W.
dc.subject.keywords.spa.fl_str_mv Microgrid;
DC-DC Converter;
Electric Potential
topic Microgrid;
DC-DC Converter;
Electric Potential
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description This paper addresses the problem of optimal location and sizing of distributed generators (DGs) in direct current (DC) grids. To solve it, we propose an optimization approach with an objective function that aims to reduce power losses due to energy transport, while considering all the constraints that represent DC grids in a distributed generation environment. For the mathematical formulation of the problem, we used a mixed-integer nonlinear programming (MINLP) model, which allowed us to evaluate the impact of all possible configurations (i.e., location and size of DGs in the DC network) on the objective function and the constraints. The solution method proposed here is a master–slave strategy that implements a hybrid solution methodology that combines a genetic algorithm (GA) and the vortex search algorithm (VSA). The GA is in charge of solving the location problem in the master stage, and the VSA is responsible for sizing the DGs in the slave stage. To evaluate the effectiveness and robustness of the proposed GA/VSA methodology, we employed two test systems (i.e., 21 and 69 buses) considering a maximum penetration of distributed generation equal to 40% of the power generated by the slack buses. Furthermore, we also implemented nine other hybrid methodologies based on metaheuristic techniques (proposed in the literature for solving the problem addressed here) to make comparisons. All the solution methods used and proposed in this paper are based on sequential programming to avoid the need for specialized software and thus reduce the complexity and cost of the solutions. The effectiveness of the proposed solution was evaluated in two scenarios: (1) peak power demand and (2) variation in power generation and demand associated with photovoltaic generation and user demand in Medellín, Colombia. The results demonstrate that the GA/VSA methodology achieved the best results in terms of solution quality and processing times in all the test scenarios proposed in this study. © 2022, King Fahd University of Petroleum & Minerals.
publishDate 2022
dc.date.issued.none.fl_str_mv 2022
dc.date.accessioned.none.fl_str_mv 2023-07-24T20:49:33Z
dc.date.available.none.fl_str_mv 2023-07-24T20:49:33Z
dc.date.submitted.none.fl_str_mv 2023
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
status_str draft
dc.identifier.citation.spa.fl_str_mv Grisales-Noreña, L. F., Montoya-Giraldo, O. D., & Gil-González, W. (2022). Optimal Integration of Distributed Generators into DC Microgrids Using a Hybrid Methodology: Genetic and Vortex Search Algorithms. Arabian Journal for Science and Engineering, 47(11), 14657-14672.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12421
dc.identifier.doi.none.fl_str_mv 10.1007/s13369-022-06866-7
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Grisales-Noreña, L. F., Montoya-Giraldo, O. D., & Gil-González, W. (2022). Optimal Integration of Distributed Generators into DC Microgrids Using a Hybrid Methodology: Genetic and Vortex Search Algorithms. Arabian Journal for Science and Engineering, 47(11), 14657-14672.
10.1007/s13369-022-06866-7
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12421
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 16 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv Arabian Journal for Science and Engineering
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12421/1/Scopus%20-%20Document%20details%20-%20Optimal%20Integration%20of%20Distributed%20Generators%20into%20DC%20Microgrids%20Using%20a%20Hybrid%20Methodology_%20Genetic%20and%20Vortex%20Search%20Algorithms.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12421/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12421/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12421/4/Scopus%20-%20Document%20details%20-%20Optimal%20Integration%20of%20Distributed%20Generators%20into%20DC%20Microgrids%20Using%20a%20Hybrid%20Methodology_%20Genetic%20and%20Vortex%20Search%20Algorithms.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12421/5/Scopus%20-%20Document%20details%20-%20Optimal%20Integration%20of%20Distributed%20Generators%20into%20DC%20Microgrids%20Using%20a%20Hybrid%20Methodology_%20Genetic%20and%20Vortex%20Search%20Algorithms.pdf.jpg
bitstream.checksum.fl_str_mv fe406bf4aec0dda9eca722570710a30a
4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
67844274b439c863410fe61bd703c81f
a5fa611661dcbea9e0d7422f41885c0b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021805454655488
spelling Grisales-Noreña, L.F.98ba5e2d-fa38-40c5-a05c-d73772e8ab17Montoya-Giraldo, O.D.e1bb7b6c-6bce-4b30-8499-2430f2e519e4Gil-González, W.59bfddb4-d5c7-4bd3-8cbe-49b131a07e1c2023-07-24T20:49:33Z2023-07-24T20:49:33Z20222023Grisales-Noreña, L. F., Montoya-Giraldo, O. D., & Gil-González, W. (2022). Optimal Integration of Distributed Generators into DC Microgrids Using a Hybrid Methodology: Genetic and Vortex Search Algorithms. Arabian Journal for Science and Engineering, 47(11), 14657-14672.https://hdl.handle.net/20.500.12585/1242110.1007/s13369-022-06866-7Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThis paper addresses the problem of optimal location and sizing of distributed generators (DGs) in direct current (DC) grids. To solve it, we propose an optimization approach with an objective function that aims to reduce power losses due to energy transport, while considering all the constraints that represent DC grids in a distributed generation environment. For the mathematical formulation of the problem, we used a mixed-integer nonlinear programming (MINLP) model, which allowed us to evaluate the impact of all possible configurations (i.e., location and size of DGs in the DC network) on the objective function and the constraints. The solution method proposed here is a master–slave strategy that implements a hybrid solution methodology that combines a genetic algorithm (GA) and the vortex search algorithm (VSA). The GA is in charge of solving the location problem in the master stage, and the VSA is responsible for sizing the DGs in the slave stage. To evaluate the effectiveness and robustness of the proposed GA/VSA methodology, we employed two test systems (i.e., 21 and 69 buses) considering a maximum penetration of distributed generation equal to 40% of the power generated by the slack buses. Furthermore, we also implemented nine other hybrid methodologies based on metaheuristic techniques (proposed in the literature for solving the problem addressed here) to make comparisons. All the solution methods used and proposed in this paper are based on sequential programming to avoid the need for specialized software and thus reduce the complexity and cost of the solutions. The effectiveness of the proposed solution was evaluated in two scenarios: (1) peak power demand and (2) variation in power generation and demand associated with photovoltaic generation and user demand in Medellín, Colombia. The results demonstrate that the GA/VSA methodology achieved the best results in terms of solution quality and processing times in all the test scenarios proposed in this study. © 2022, King Fahd University of Petroleum & Minerals.16 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Arabian Journal for Science and EngineeringOptimal Integration of Distributed Generators into DC Microgrids Using a Hybrid Methodology: Genetic and Vortex Search Algorithmsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Microgrid;DC-DC Converter;Electric PotentialLEMBCartagena de IndiasAnser, M.K., Iqbal, W., Ahmad, U.S., Fatima, A., Chaudhry, I.S. Environmental efficiency and the role of energy innovation in emissions reduction (Open Access) (2020) Environmental Science and Pollution Research, 27 (23), pp. 29451-29463. Cited 60 times. https://link.springer.com/journal/11356 doi: 10.1007/s11356-020-09129-wDanish, M.S.S., Matayoshi, H., Howlader, H.R., Chakraborty, S., Mandal, P., Senjyu, T. Microgrid Planning and Design: Resilience to Sustainability (2019) 2019 IEEE PES GTD Grand International Conference and Exposition Asia, GTD Asia 2019, art. no. 8716010, pp. 253-258. Cited 22 times. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8711479 ISBN: 978-153867434-5 doi: 10.1109/GTDAsia.2019.8716010Hajiaghasi, S., Salemnia, A., Hamzeh, M. Hybrid energy storage system for microgrids applications: A review (2019) Journal of Energy Storage, 21, pp. 543-570. Cited 301 times. http://www.journals.elsevier.com/journal-of-energy-storage/ doi: 10.1016/j.est.2018.12.017Kumar, J., Agarwal, A., Agarwal, V. A review on overall control of DC microgrids (2019) Journal of Energy Storage, 21, pp. 113-138. Cited 141 times. http://www.journals.elsevier.com/journal-of-energy-storage/ doi: 10.1016/j.est.2018.11.013Grisales-Noreña, L.F., Montoya, O.D., Ramos-Paja, C.A. An energy management system for optimal operation of BSS in DC distributed generation environments based on a parallel PSO algorithm (2020) Journal of Energy Storage, 29, art. no. 101488. Cited 58 times. http://www.journals.elsevier.com/journal-of-energy-storage/ doi: 10.1016/j.est.2020.101488Grisales-Noreña, L.F., Montoya, O.D., Ramos-Paja, C.A., Hernandez-Escobedo, Q., Perea-Moreno, A.-J. Optimal location and sizing of distributed generators in dc networks using a hybrid method based on parallel pbil and pso (Open Access) (2020) Electronics (Switzerland), 9 (11), art. no. 1808, pp. 1-27. Cited 12 times. https://www.mdpi.com/2079-9292/9/11/1808/pdf doi: 10.3390/electronics9111808Ehsan, A., Yang, Q. State-of-the-art techniques for modelling of uncertainties in active distribution network planning: A review (2019) Applied Energy, 239, pp. 1509-1523. Cited 135 times. http://www.elsevier.com/inca/publications/store/4/0/5/8/9/1/index.htt doi: 10.1016/j.apenergy.2019.01.211Deng, X., Lv, T. Power system planning with increasing variable renewable energy: A review of optimization models (2020) Journal of Cleaner Production, 246, art. no. 118962. Cited 133 times. https://www.journals.elsevier.com/journal-of-cleaner-production doi: 10.1016/j.jclepro.2019.118962Adam, G.P., Vrana, T.K., Li, R., Li, P., Burt, G., Finney, S. Review of technologies for DC grids – power conversion, flow control and protection (2019) IET Power Electronics, 12 (8), pp. 1851-1867. Cited 29 times. http://digital-library.theiet.org/content/journals/iet-pel doi: 10.1049/iet-pel.2018.5719Grisales-Noreña, L.F., Montoya, O.D., Gil-González, W.J., Perea-Moreno, A.-J., Perea-Moreno, M.-A. A comparative study on power flow methods for direct-current networks considering processing time and numerical convergence errors (2020) Electronics (Switzerland), 9 (12), art. no. 2062, pp. 1-20. Cited 15 times. https://www.mdpi.com/2079-9292/9/12/2062/pdf doi: 10.3390/electronics9122062Nasir, M., Iqbal, S., Khan, H.A. Optimal Planning and Design of Low-Voltage Low-Power Solar DC Microgrids (2018) IEEE Transactions on Power Systems, 33 (3), pp. 2919-2928. Cited 63 times. doi: 10.1109/TPWRS.2017.2757150Montoya, O.D., Garrido, V.M., Gil-Gonzalez, W., Grisales-Norena, L.F. Power Flow Analysis in DC Grids: Two Alternative Numerical Methods (Open Access) (2019) IEEE Transactions on Circuits and Systems II: Express Briefs, 66 (11), art. no. 8606244, pp. 1865-1869. Cited 60 times. http://www.ieee-cas.org doi: 10.1109/TCSII.2019.2891640Montoya, O.D. A convex OPF approximation for selecting the best candidate nodes for optimal location of power sources on DC resistive networks (2020) Engineering Science and Technology, an International Journal, 23 (3), pp. 527-533. Cited 22 times. www.journals.elsevier.com/engineering-science-and-technology-an-international-journal/ doi: 10.1016/j.jestch.2019.06.010Montoya, O.D., Gil-González, W., Grisales-Noreña, L.F. Relaxed convex model for optimal location and sizing of DGs in DC grids using sequential quadratic programming and random hyperplane approaches (2020) International Journal of Electrical Power and Energy Systems, 115, art. no. 105442. Cited 23 times. https://www.journals.elsevier.com/international-journal-of-electrical-power-and-energy-systems doi: 10.1016/j.ijepes.2019.105442Grisales-Noreña, L.F., Garzon-Rivera, O.D., Danilo Montoya, O., Ramos-Paja, C.A. Hybrid Metaheuristic Optimization Methods for Optimal Location and Sizing DGs in DC Networks (Open Access) (2019) Communications in Computer and Information Science, 1052, pp. 214-225. Cited 12 times. http://www.springer.com/series/7899 ISBN: 978-303031018-9 doi: 10.1007/978-3-030-31019-6_19Garzon–Rivera, O.D., Grisales–Nore˜na, L.F., Ocampo, J.A., Montoya, O.D., Rojas–Montano, J.J. Optimal Power Flow in Direct Current Networks Using the Antlion Optimizer (Open Access) (2020) Statistics, Optimization and Information Computing, 8 (4), pp. 846-857. Cited 10 times. www.iapress.org/index.php/soic/index doi: 10.19139/soic-2310-5070-1022Wang, P., Wang, W., Xu, D. Optimal sizing of distributed generations in DC microgrids with comprehensive consideration of system operation modes and operation targets (2018) IEEE Access, 6, pp. 31129-31140. Cited 52 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639 doi: 10.1109/ACCESS.2018.2842119Ajayi, O., Nwulu, N., Damisa, U. Application of metaheuristic algorithms in DC-optimal power flow (2020) African Journal of Science, Technology, Innovation and Development, 12 (7), pp. 867-872. Cited 4 times. http://tandfonline.com/action/journalInformation?show=aimsScope&journalCode=rajs20#.Vzs1DYSLTmE doi: 10.1080/20421338.2020.1726084Khezri, R., Mahmoudi, A., Haque, M.H. Two-Stage Optimal Sizing of Standalone Hybrid Electricity Systems with Time-of-Use Incentive Demand Response (2020) ECCE 2020 - IEEE Energy Conversion Congress and Exposition, art. no. 9236381, pp. 2759-2765. Cited 9 times. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9235288 ISBN: 978-172815826-6 doi: 10.1109/ECCE44975.2020.9236381Pesaran H.A, M., Huy, P.D., Ramachandaramurthy, V.K. A review of the optimal allocation of distributed generation: Objectives, constraints, methods, and algorithms (2017) Renewable and Sustainable Energy Reviews, 75, pp. 293-312. Cited 247 times. https://www.journals.elsevier.com/renewable-and-sustainable-energy-reviews doi: 10.1016/j.rser.2016.10.071Grisales-Noreña, L.F., Montoya, D.G., Ramos-Paja, C.A. Optimal sizing and location of distributed generators based on PBIL and PSO techniques (2018) Energies, 11 (4), art. no. en11041018. Cited 98 times. http://www.mdpi.com/journal/energies/ doi: 10.3390/en11041018Doǧanşahin, K., Kekezoǧlu, B., Yumurtaci, R., Erdinç, O., Catalão, J.P.S. Maximum permissible integration capacity of renewable DG units based on system loads (Open Access) (2018) Energies, 11 (1), art. no. en11010255. Cited 21 times. http://www.mdpi.com/journal/energies/ doi: 10.3390/en11010255Özkış, A., Babalık, A. A novel metaheuristic for multi-objective optimization problems: The multi-objective vortex search algorithm (2017) Information Sciences, 402, pp. 124-148. Cited 54 times. http://www.journals.elsevier.com/information-sciences/ doi: 10.1016/j.ins.2017.03.026Montoya, O.D., Grisales-Noreña, L.F., González-Montoya, D., Ramos-Paja, C.A., Garces, A. Linear power flow formulation for low-voltage DC power grids (2018) Electric Power Systems Research, Part A 163, pp. 375-381. Cited 80 times. doi: 10.1016/j.epsr.2018.07.003Grisales, L.F., Grajales, A., Montoya, O.D., Hincapié, R.A., Granada, M. Optimal location and sizing of Distributed Generators using a hybrid methodology and considering different technologies (2015) 2015 IEEE 6th Latin American Symposium on Circuits and Systems, LASCAS 2015 - Conference Proceedings, art. no. 7250486. Cited 16 times. ISBN: 978-147998332-2 doi: 10.1109/LASCAS.2015.7250486http://purl.org/coar/resource_type/c_6501ORIGINALScopus - Document details - Optimal Integration of Distributed Generators into DC Microgrids Using a Hybrid Methodology_ Genetic and Vortex Search Algorithms.pdfScopus - Document details - Optimal Integration of Distributed Generators into DC Microgrids Using a Hybrid Methodology_ Genetic and Vortex Search Algorithms.pdfapplication/pdf180224https://repositorio.utb.edu.co/bitstream/20.500.12585/12421/1/Scopus%20-%20Document%20details%20-%20Optimal%20Integration%20of%20Distributed%20Generators%20into%20DC%20Microgrids%20Using%20a%20Hybrid%20Methodology_%20Genetic%20and%20Vortex%20Search%20Algorithms.pdffe406bf4aec0dda9eca722570710a30aMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12421/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12421/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTScopus - Document details - Optimal Integration of Distributed Generators into DC Microgrids Using a Hybrid Methodology_ Genetic and Vortex Search Algorithms.pdf.txtScopus - Document details - Optimal Integration of Distributed Generators into DC Microgrids Using a Hybrid Methodology_ Genetic and Vortex Search Algorithms.pdf.txtExtracted texttext/plain2600https://repositorio.utb.edu.co/bitstream/20.500.12585/12421/4/Scopus%20-%20Document%20details%20-%20Optimal%20Integration%20of%20Distributed%20Generators%20into%20DC%20Microgrids%20Using%20a%20Hybrid%20Methodology_%20Genetic%20and%20Vortex%20Search%20Algorithms.pdf.txt67844274b439c863410fe61bd703c81fMD54THUMBNAILScopus - Document details - Optimal Integration of Distributed Generators into DC Microgrids Using a Hybrid Methodology_ Genetic and Vortex Search Algorithms.pdf.jpgScopus - Document details - Optimal Integration of Distributed Generators into DC Microgrids Using a Hybrid Methodology_ Genetic and Vortex Search Algorithms.pdf.jpgGenerated Thumbnailimage/jpeg6092https://repositorio.utb.edu.co/bitstream/20.500.12585/12421/5/Scopus%20-%20Document%20details%20-%20Optimal%20Integration%20of%20Distributed%20Generators%20into%20DC%20Microgrids%20Using%20a%20Hybrid%20Methodology_%20Genetic%20and%20Vortex%20Search%20Algorithms.pdf.jpga5fa611661dcbea9e0d7422f41885c0bMD5520.500.12585/12421oai:repositorio.utb.edu.co:20.500.12585/124212023-07-25 00:17:47.108Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=