Biocontrol of Phytophthora root and stem rot disease in papaya (Carica papaya) plants by Photorhabdus, the symbiont bacterium of Heterorhabditis amazonensis

The effect of two strains of Photorhabdus spp. from Heterorhabditis amazonensis and their metabolites was tested against Phytophthora in laboratory conditions and in planta using papaya plants. The in vitro experiments showed that both Photorhabdus strains (LPV-499 and LPV-900) have a clear antagoni...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/9006
Acceso en línea:
https://hdl.handle.net/20.500.12585/9006
Palabra clave:
Biological control
Nursery
Oomycete
Phytopathology
Tropical fruits
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_a8bcc21f67c7fb6f6e6a8c484f368273
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/9006
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Biocontrol of Phytophthora root and stem rot disease in papaya (Carica papaya) plants by Photorhabdus, the symbiont bacterium of Heterorhabditis amazonensis
title Biocontrol of Phytophthora root and stem rot disease in papaya (Carica papaya) plants by Photorhabdus, the symbiont bacterium of Heterorhabditis amazonensis
spellingShingle Biocontrol of Phytophthora root and stem rot disease in papaya (Carica papaya) plants by Photorhabdus, the symbiont bacterium of Heterorhabditis amazonensis
Biological control
Nursery
Oomycete
Phytopathology
Tropical fruits
title_short Biocontrol of Phytophthora root and stem rot disease in papaya (Carica papaya) plants by Photorhabdus, the symbiont bacterium of Heterorhabditis amazonensis
title_full Biocontrol of Phytophthora root and stem rot disease in papaya (Carica papaya) plants by Photorhabdus, the symbiont bacterium of Heterorhabditis amazonensis
title_fullStr Biocontrol of Phytophthora root and stem rot disease in papaya (Carica papaya) plants by Photorhabdus, the symbiont bacterium of Heterorhabditis amazonensis
title_full_unstemmed Biocontrol of Phytophthora root and stem rot disease in papaya (Carica papaya) plants by Photorhabdus, the symbiont bacterium of Heterorhabditis amazonensis
title_sort Biocontrol of Phytophthora root and stem rot disease in papaya (Carica papaya) plants by Photorhabdus, the symbiont bacterium of Heterorhabditis amazonensis
dc.subject.keywords.none.fl_str_mv Biological control
Nursery
Oomycete
Phytopathology
Tropical fruits
topic Biological control
Nursery
Oomycete
Phytopathology
Tropical fruits
description The effect of two strains of Photorhabdus spp. from Heterorhabditis amazonensis and their metabolites was tested against Phytophthora in laboratory conditions and in planta using papaya plants. The in vitro experiments showed that both Photorhabdus strains (LPV-499 and LPV-900) have a clear antagonist effect on Phytophthora sp. by suppressing the pathogen growth in more than 62% at 120 h. The bacterial broth was more effective (c.a. 20% better) than the cell free cultures (metabolites) in controlling the oomycete. In planta experiments revealed the biological control potential of both Photorhabdus strains. The most important feature was time of application after pathogen inoculation. During the first two weeks post-infection, bacteria were capable to reduce the pathogenic effect in such a scale that plants recovered up to 89% by curing the necrosis produced in the wounds where the inoculation of the oomycete was done. The number of collapsed stems was reduced to none when the bacteria were applied within the first week post pathogen infection. Agronomic variables such as plant height, fresh and dry weight of stems and roots showed no statistical differences when the curative treatment was applied in the first week post-infection. © 2019, International Organization for Biological Control (IOBC).
publishDate 2019
dc.date.issued.none.fl_str_mv 2019
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:32:45Z
dc.date.available.none.fl_str_mv 2020-03-26T16:32:45Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.hasVersion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv BioControl; Vol. 64, Núm. 5; pp. 595-604
dc.identifier.issn.none.fl_str_mv 13866141
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/9006
dc.identifier.doi.none.fl_str_mv 10.1007/s10526-019-09948-y
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 57209829291
49964456700
57212531062
14832570400
23061726000
identifier_str_mv BioControl; Vol. 64, Núm. 5; pp. 595-604
13866141
10.1007/s10526-019-09948-y
Universidad Tecnológica de Bolívar
Repositorio UTB
57209829291
49964456700
57212531062
14832570400
23061726000
url https://hdl.handle.net/20.500.12585/9006
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessRights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer Netherlands
publisher.none.fl_str_mv Springer Netherlands
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068851454&doi=10.1007%2fs10526-019-09948-y&partnerID=40&md5=e05c538e62a297c5ca50533f655d3cf1
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/9006/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021805412712448
spelling 2020-03-26T16:32:45Z2020-03-26T16:32:45Z2019BioControl; Vol. 64, Núm. 5; pp. 595-60413866141https://hdl.handle.net/20.500.12585/900610.1007/s10526-019-09948-yUniversidad Tecnológica de BolívarRepositorio UTB5720982929149964456700572125310621483257040023061726000The effect of two strains of Photorhabdus spp. from Heterorhabditis amazonensis and their metabolites was tested against Phytophthora in laboratory conditions and in planta using papaya plants. The in vitro experiments showed that both Photorhabdus strains (LPV-499 and LPV-900) have a clear antagonist effect on Phytophthora sp. by suppressing the pathogen growth in more than 62% at 120 h. The bacterial broth was more effective (c.a. 20% better) than the cell free cultures (metabolites) in controlling the oomycete. In planta experiments revealed the biological control potential of both Photorhabdus strains. The most important feature was time of application after pathogen inoculation. During the first two weeks post-infection, bacteria were capable to reduce the pathogenic effect in such a scale that plants recovered up to 89% by curing the necrosis produced in the wounds where the inoculation of the oomycete was done. The number of collapsed stems was reduced to none when the bacteria were applied within the first week post pathogen infection. Agronomic variables such as plant height, fresh and dry weight of stems and roots showed no statistical differences when the curative treatment was applied in the first week post-infection. © 2019, International Organization for Biological Control (IOBC).Recurso electrónicoapplication/pdfengSpringer Netherlandshttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85068851454&doi=10.1007%2fs10526-019-09948-y&partnerID=40&md5=e05c538e62a297c5ca50533f655d3cf1Biocontrol of Phytophthora root and stem rot disease in papaya (Carica papaya) plants by Photorhabdus, the symbiont bacterium of Heterorhabditis amazonensisinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Biological controlNurseryOomycetePhytopathologyTropical fruitsPalmieri D.Portillo E.Sulbarán Y.Guerra M.San-Blas E.Bae, S.-J., Mohanta, T.K., Chung, J.Y., Ryu, M., Park, G., Shim, S., Hong, S.-B., Bae, H., Trichoderma metabolites as biological control agents against Phytophthora pathogens (2016) Biol Control, 92, pp. 128-138Bock, C.H., Shapiro-Ilan, D.I., Wedge, D.E., Cantrell, C.L., Identification of the antifungal compound, trans-cinnamic acid, produced by Photorhabdus luminescens, a potential biopesticide against pecan scab (2004) J Pest Sci, 87, pp. 155-162Boevink, P.C., McLellan, H., Gilroy, E.M., Naqvi, S., He, Q., Yang, L., Wang, X., Birch, P.R.J., Oomycetes seek help from the plant: Phytophthora infestans effectors target host susceptibility factors (2016) Mol Plant, 9, pp. 636-638Drenth, A., Sendall, B., (2001) Practical guide to detection and identification of Phytophthora, , 1, CRC for Tropical Plant Protection, BrisbaneDutky, S.R., Thompson, J.V., Cantwell, G.E., A technique for the mass propagation of the DD-136 nematode (1964) J Insect Physiol, 6, pp. 417-422Ezziyyani, M., Requena, M.E., Egea-Gilabert, C., Candela, M.E., Biological control of Phytophthora root rot of pepper using Trichoderma harzianum and Streptomyces rochei in combination (2007) J Phytopathol, 155, pp. 342-349Fang, X., Zhang, M., Tang, Q., Wang, Y., Zhang, X., Inhibitory effect of Xenorhabdus nematophila TB on plant pathogens Phytophthora capsici and Botrytis cinerea in vitro and in planta (2014) Sci Rep, 4, p. 4300(2018) FAOSTATS, , http://www.fao.org/faostat/en/#data/QC, Accessed 6 Oct 2018Hazir, S., Shapiro-Ilan, D.I., Bock, C.H., Hazir, C., Leite, L.G., Hotchkiss, M.W., Relative potency of culture supernatants of Xenorhabdus and Photorhabdus spp. on growth of some fungal phytopathogens (2016) Eur J Plant Pathol, 146, pp. 369-381Hung, P.M., Wattanachai, P., Kasem, S., Poaim, S., Biological control of Phytophthora palmivora causing root rot of pomelo using Chaetomium spp (2015) Mycobiology, 43, pp. 63-70Kim, H.S., Sang, M.K., Jeun, Y.-C., Hwang, B.K., Kim, K.D., Sequential selection and efficacy of antagonistic rhizobacteria for controlling Phytophthora blight of pepper (2008) Crop Prot, 27, pp. 436-443Lamour, K.H., Stam, R., Jupe, J., Huitema, E., The oomycete broad-host-range pathogen Phytophthora capsici (2012) Mol Plant Pathol, 13, pp. 329-337Leguízamo, M.C., Sánchez, M., Martínez, J., Vela, D., Clavijo, S., García, A., Control of Fusarium spp and Bacillus subtilis through metabolites of Xenorhabdus bovienii mutualist of Steinernema feltiae (2014) Acta Agron, 63, pp. 55-62Ng, K.K., Webster, J.M., Antimycotic activity of Xenorhabdus bovienii (Enterobacteriaceae) metabolites against Phytophthora infestans on potato plants (1997) Can J Plant Pathol, 19, pp. 125-132Paul, V.J., Frautschy, S., Fenical, W., Nealson, K.H., Antibiotics in microbial ecology (1981) J Chem Ecol, 7, pp. 589-597Ribeiro, O.K., A historical perspective of Phytophthora (2013) Phytophthora: a global perspective, pp. 1-10. , Lamour K, (ed), CABI, WallingfordSan-Blas, E., Carrillo, Z., Parra, Y., Effect of Xenorhabdus and Photorhabdus bacteria and their exudates on Moniliophthora roreri (2012) Arch Phytopathol Plant Prot, 45, pp. 1950-1967San-Blas, E., Parra, Y., Carrillo, Z., Effect of Xenorhabdus and Photorhabdus bacteria (Enterobacteriales: Enterobacteriaceae) and their exudates on the apical rotten fruit disease caused by Dothiorella sp. in guava (Psidium guajava) (2013) Arch Phytopathol Plant Prot, 46, pp. 2294-2303Sang, M.K., Chun, S.-C., Kim, K.D., Biological control of Phytophthora blight of pepper by antagonistic rhizobacteria selected from a sequential screening procedure (2008) Biol Control, 46, pp. 424-433Sang, M.K., Shrestha, A., Kim, D.-Y., Park, K., Pak, C.H., Kim, K.D., Biocontrol of Phytophthora blight and anthracnose in pepper by sequentially selected antagonistic rhizobacteria against Phytophthora capsici (2013) Plant Pathol J, 29, pp. 154-167Scott, P., Burgess, T., Hardy, G., Globalization and Phytophthora (2013) Phytophthora: a global perspective, pp. 226-232. , Lamour K, (ed), CABI, WallingfordSegarra, G., Aviles, M., Casanova, E., Borrero, C., Trillas, I., Effectiveness of biological control of Phytophthora capsici in pepper by Trichoderma asperellum strain T34 (2013) Phytopathol Mediterr, 52, pp. 77-83Shapiro-Ilan, D., Gaugler, R., Production technology for entomopathogenic nematodes and their bacterial symbionts (2002) J Ind Microbiol Biotechnol, 28, pp. 137-146Shapiro-Ilan, D.I., Reilly, C.C., Hotchkiss, M., Suppressive effects of metabolites from Photorhabdus and Xenorhabdus spp. on phytopathogens of peach and pecan (2009) Arch Phytopathol Plant Prot, 42, pp. 715-728Shapiro-Ilan, D.I., Bock, C.H., Hotchkiss, M.W., Suppression of pecan and peach pathogens on different substrates using Xenorhabdus bovienii and Photorhabdus luminescens (2014) Biol Control, 77, pp. 1-6Shearer, B.L., Crane, C.E., Cochrane, A., Quantification of the susceptibility of the native flora of the South-West Botanical Province, Western Australia, to Phytophthora cinnamomi (2004) Aust J Bot, 52, pp. 435-443Shi, D., An, R., Zhang, W., Zhang, G., Yu, Z., Stilbene derivatives from Photorhabdus temperata SN259 and their antifungal activities against phytopathogenic fungi (2017) J Agric Food Chem, 65, pp. 60-65Smith, V.L., Wilcox, F., Harman, G.E., Potential for biological control of Phytophthora root and crown rots of apple by Trichoderma and Gliocladium spp (1990) Phytopathology, 80, pp. 880-885Sukhada, M., Manjula, R., Rawal, R.D., Evaluation of arbuscular mycorrhiza and other biocontrol agents against Phytophthora parasitica var. nicotianae infecting papaya (Carica papaya cv. Surya) and enumeration of pathogen population using immunotechniques (2011) Biol Control, 58, pp. 22-29The Quyet, N., Cuong, T.H.V., Hong, L.T.A., Soytong, K., Antagonism of Chaetomium spp and their ability to control citrus root rot caused by Phytophthora parasitica in Vietnam (2014) Int J Agric Technol, 10, pp. 1307-1316Ullah, I., Khan, A.L., Ali, L., Khan, A.R., Waqas, M., Hussain, J., Lee, I.J., Shin, J.H., Benzaldehyde as an insecticidal, antimicrobial, and antioxidant compound produced by Photorhabdus temperata M1021 (2015) J Microbiol, 53, pp. 127-133Vawdrey, L.L., Martin, T.M., De Faveri, J., The potential of organic and inorganic soil amendments, and a biological control agent (Trichoderma sp.) for the management of Phytophthora root rot of papaw in far northern Queensland (2002) Australas Plant Pathol, 31, pp. 391-399Vawdrey, L.L., Male, M., Grice, K.R.E., Field and laboratory evaluation of fungicides for the control of Phytophthora fruit rot of papaya in far north Queensland, Australia (2015) Crop Prot, 67, pp. 116-120Velivelli, S.L.S., De Vos, P., Kromann, P., Declerck, S., Prestwich, B.D., Biological control agents: from field to market, problems, and challenges (2014) Trends Biotechnol, 32, pp. 493-496Wang, Y.-H., Zhang, X., Influence of agitation and aeration on growth and antibiotic production by Xenorhabdus nematophila (2007) World J Microbiol Biotechnol, 23, pp. 221-227Wang, Y.-H., Li, Y.-P., Zhang, Q., Zhang, X., Enhanced antibiotic activity of Xenorhabdus nematophila by medium optimization (2008) Bioresour Technol, 99, pp. 1708-1715Waterfield, N.R., Ciche, T., Clarke, D., Photorhabdus and a host of hosts (2009) Annu Rev Microbiol, 63, pp. 557-574Webster, J., Li, J., Hu, K., Nematicidal metabolites produced by Photorhabdus luminescens (Enterobacteriaceae), bacterial symbiont of entomopathogenic nematodes (1999) Nematology, 1, pp. 457-469Yang, X., Qiu, D., Yang, H., Liu, Z., Zeng, H., Yuan, J., Antifungal activity of xenocoumacin 1 from Xenorhabdus nematophilus var. pekingensis against Phytophthora infestans (2011) World J Microbiol Biotechnol, 27, pp. 523-528http://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9006/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9006oai:repositorio.utb.edu.co:20.500.12585/90062021-02-02 13:53:42.285Repositorio Institucional UTBrepositorioutb@utb.edu.co