Analysis and Classification of Evoked Potentials in Response to Familiar and Unfamiliar Faces

Brain activity during perception and recognition of faces have been studied by researchers with the purpose to develop brain-computer interfaces and to study neurological disorders. In this paper, we analyzed evoked potentials as neurophysiological indicators and developed a model based on signal pr...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2018
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/9204
Acceso en línea:
https://hdl.handle.net/20.500.12585/9204
Palabra clave:
Electroencephalography
Evoked potentials
Face recognition
Machine learning
Wavelet transform
Artificial intelligence
Bioelectric potentials
Biomedical signal processing
Brain
Brain computer interface
Electroencephalography
Electrophysiology
Learning systems
Neurophysiology
Wavelet transforms
Binomial logistic regressions
Classification accuracy
Classification results
Feature extraction stages
Machine learning techniques
Morphological analysis
Morphological characteristic
Perception and recognition
Face recognition
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_a82b151f7ce94c215b4bbeaf6ed81853
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/9204
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Analysis and Classification of Evoked Potentials in Response to Familiar and Unfamiliar Faces
title Analysis and Classification of Evoked Potentials in Response to Familiar and Unfamiliar Faces
spellingShingle Analysis and Classification of Evoked Potentials in Response to Familiar and Unfamiliar Faces
Electroencephalography
Evoked potentials
Face recognition
Machine learning
Wavelet transform
Artificial intelligence
Bioelectric potentials
Biomedical signal processing
Brain
Brain computer interface
Electroencephalography
Electrophysiology
Learning systems
Neurophysiology
Wavelet transforms
Binomial logistic regressions
Classification accuracy
Classification results
Feature extraction stages
Machine learning techniques
Morphological analysis
Morphological characteristic
Perception and recognition
Face recognition
title_short Analysis and Classification of Evoked Potentials in Response to Familiar and Unfamiliar Faces
title_full Analysis and Classification of Evoked Potentials in Response to Familiar and Unfamiliar Faces
title_fullStr Analysis and Classification of Evoked Potentials in Response to Familiar and Unfamiliar Faces
title_full_unstemmed Analysis and Classification of Evoked Potentials in Response to Familiar and Unfamiliar Faces
title_sort Analysis and Classification of Evoked Potentials in Response to Familiar and Unfamiliar Faces
dc.contributor.editor.none.fl_str_mv Callejas J.D.C.
dc.subject.keywords.none.fl_str_mv Electroencephalography
Evoked potentials
Face recognition
Machine learning
Wavelet transform
Artificial intelligence
Bioelectric potentials
Biomedical signal processing
Brain
Brain computer interface
Electroencephalography
Electrophysiology
Learning systems
Neurophysiology
Wavelet transforms
Binomial logistic regressions
Classification accuracy
Classification results
Feature extraction stages
Machine learning techniques
Morphological analysis
Morphological characteristic
Perception and recognition
Face recognition
topic Electroencephalography
Evoked potentials
Face recognition
Machine learning
Wavelet transform
Artificial intelligence
Bioelectric potentials
Biomedical signal processing
Brain
Brain computer interface
Electroencephalography
Electrophysiology
Learning systems
Neurophysiology
Wavelet transforms
Binomial logistic regressions
Classification accuracy
Classification results
Feature extraction stages
Machine learning techniques
Morphological analysis
Morphological characteristic
Perception and recognition
Face recognition
description Brain activity during perception and recognition of faces have been studied by researchers with the purpose to develop brain-computer interfaces and to study neurological disorders. In this paper, we analyzed evoked potentials as neurophysiological indicators and developed a model based on signal processing and machine learning techniques to find descriptive patterns that allow the differentiation of familiar and unfamiliar faces. We considered wave components such as P1, N170, N250, P300, and N400 to describe the events. Morphological analysis and wavelet transform were used for the feature extraction stage, and support vector machines and binomial logistic regression were evaluated for the classification stage. The best classification results were obtained with the morphological characteristics, where the highest classification accuracy was 80% on average. © 2018 IEEE.
publishDate 2018
dc.date.issued.none.fl_str_mv 2018
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:33:13Z
dc.date.available.none.fl_str_mv 2020-03-26T16:33:13Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_c94f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.hasversion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Conferencia
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv 2018 IEEE ANDESCON, ANDESCON 2018 - Conference Proceedings
dc.identifier.isbn.none.fl_str_mv 9781538683729
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/9204
dc.identifier.doi.none.fl_str_mv 10.1109/ANDESCON.2018.8564591
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 57205528869
57210822856
identifier_str_mv 2018 IEEE ANDESCON, ANDESCON 2018 - Conference Proceedings
9781538683729
10.1109/ANDESCON.2018.8564591
Universidad Tecnológica de Bolívar
Repositorio UTB
57205528869
57210822856
url https://hdl.handle.net/20.500.12585/9204
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.conferencedate.none.fl_str_mv 22 August 2018 through 24 August 2018
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85060377163&doi=10.1109%2fANDESCON.2018.8564591&partnerID=40&md5=636208c54b94118642f0da270a42a1ab
Scopus2-s2.0-85060377163
institution Universidad Tecnológica de Bolívar
dc.source.event.none.fl_str_mv 9th IEEE ANDESCON, ANDESCON 2018
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/9204/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021789923147776
spelling Callejas J.D.C.Sanchez-Hernandez S.A.Contreras Ortiz, Sonia Helena2020-03-26T16:33:13Z2020-03-26T16:33:13Z20182018 IEEE ANDESCON, ANDESCON 2018 - Conference Proceedings9781538683729https://hdl.handle.net/20.500.12585/920410.1109/ANDESCON.2018.8564591Universidad Tecnológica de BolívarRepositorio UTB5720552886957210822856Brain activity during perception and recognition of faces have been studied by researchers with the purpose to develop brain-computer interfaces and to study neurological disorders. In this paper, we analyzed evoked potentials as neurophysiological indicators and developed a model based on signal processing and machine learning techniques to find descriptive patterns that allow the differentiation of familiar and unfamiliar faces. We considered wave components such as P1, N170, N250, P300, and N400 to describe the events. Morphological analysis and wavelet transform were used for the feature extraction stage, and support vector machines and binomial logistic regression were evaluated for the classification stage. The best classification results were obtained with the morphological characteristics, where the highest classification accuracy was 80% on average. © 2018 IEEE.Institute of Electrical and Electronics Engineers Colombia Section;Institute of Electrical and Electronics Engineers Consejo AndinoRecurso electrónicoapplication/pdfengInstitute of Electrical and Electronics Engineers Inc.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85060377163&doi=10.1109%2fANDESCON.2018.8564591&partnerID=40&md5=636208c54b94118642f0da270a42a1abScopus2-s2.0-850603771639th IEEE ANDESCON, ANDESCON 2018Analysis and Classification of Evoked Potentials in Response to Familiar and Unfamiliar Facesinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fElectroencephalographyEvoked potentialsFace recognitionMachine learningWavelet transformArtificial intelligenceBioelectric potentialsBiomedical signal processingBrainBrain computer interfaceElectroencephalographyElectrophysiologyLearning systemsNeurophysiologyWavelet transformsBinomial logistic regressionsClassification accuracyClassification resultsFeature extraction stagesMachine learning techniquesMorphological analysisMorphological characteristicPerception and recognitionFace recognition22 August 2018 through 24 August 2018Lopera, R.F., Procesamiento de caras: Bases neurológicas, trastornos y evaluación (2000) Revista de Neurología, 30 (5), pp. 1-5Pérez, Y.B., (2014) Memoria de Rostros y Reconocimiento Emocional: Generalidades Teóricas, Bases Neurales y Patologías Asociadas Face Memory and Emotional Recognition: Theory, Neural Substrates and Related Pathologies, 28 (116), pp. 27-40Olivares, E.I., Saavedra, C., Iglesias, J., (2012) Potenciales Evocados Como Marcadores Neurofisiológicos de la Percepción y El Reconocimiento de Caras, pp. 27-38Özbeyaz, A., Arica, S., Classification of EEG signals of familiar and unfamiliar face stimuli exploiting most discriminative channels (2017) Turkish J. Electr. Eng. Comput. Sci., 25, pp. 3342-3354Li, Y., Single Trial EEG Classification Applied to a Face Recognition Experiment Using Different Feature Extraction Methods (2015) IEEE Eng Med Biol Soc., pp. 7246-7249Henson, R.N., Multi-modal face dataset (2009) Funct. Imaging Lab., p. 2018. , http://www.fil.ion.ucl.ac.uk/spm/data/mmfaces/(1991) SPM Software-Statistical Parametric Mapping, pp. 3-4. , http://www.fil.ion.ucl.ac.uk/spm/software/, Members & collaborators of the Wellcome Trust Centre for Neuroimaging 13/04/2012Barry, R., Johnstone, S., Clarke, A., A review of electrophysiology in attention-deficit/hyperactivity disorder: II. Event-related potentials (2003) Clinical Neurophysiology, 114 (2), pp. 184-198Restrepo, F., Tamayo-Orrego, L., Parra Sanchez, J., Vera Gonzalez, A., Moscoso Ariza, O., P300-wave modulation in a group of Colombian children with attention deficit/hyperactivity disorder (2011) Acta Neurol. Colomb, 27 (3), pp. 146-153Chethan, P., Cox, M., Frequency characteristics of wavelets (2002) IEEE Transactions on Power Delivery, 17 (3), pp. 800-804Ahmadi, A., Dehzangi, O., Jafari, R., Brain-computer interface signal processing algorithms: A computational cost vs accuracy analysis for wearable computers (2012) Wearable and Implantable Body Sensor Networks (BSN), 2012 Ninth International Conference On. IEEE, pp. 40-45Zheng, T., Ernest, H., Smitha, K.G., Vinod, A.P., (2015) Detection of Familiar and Unfamiliar Images Using EEG-based Brain-Computer InterfaceHenson, R.N., Wakeman, D.G., Litvak, V., Friston, K.J., Trujillo-Barreto, N.J., (2011) A Parametric Empirical Bayesian Framework for the EEG / MEG Inverse Problem: Generative Models for Multi-subject and Multi-modal Integration, 5, pp. 1-16. , AugustIssn, O., (2017) Actualidades en Psicología Memoria de Rostros y Reconocimiento Emocional: Generalidades Teóricas, Bases Neurales y Patologías Asociadas Face Memory and Emotional Recognition: Theory, Neural, pp. 1-13Liu, J., Higuchi, M., Marantz, A., Kanwisher, N., Stages of processing in face perception: An MEG study (2002) Nat. Neuroscience, 5, pp. 910-916Alexandra, P., Cabrera, C., (2011) Extracción y Selección de Características Discriminantes para la Detección de TDAH en Registros de Potenciales Evocados Cognitivoshttp://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9204/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9204oai:repositorio.utb.edu.co:20.500.12585/92042023-05-25 15:52:39.134Repositorio Institucional UTBrepositorioutb@utb.edu.co