Analysis and Classification of Evoked Potentials in Response to Familiar and Unfamiliar Faces
Brain activity during perception and recognition of faces have been studied by researchers with the purpose to develop brain-computer interfaces and to study neurological disorders. In this paper, we analyzed evoked potentials as neurophysiological indicators and developed a model based on signal pr...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2018
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/9204
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/9204
- Palabra clave:
- Electroencephalography
Evoked potentials
Face recognition
Machine learning
Wavelet transform
Artificial intelligence
Bioelectric potentials
Biomedical signal processing
Brain
Brain computer interface
Electroencephalography
Electrophysiology
Learning systems
Neurophysiology
Wavelet transforms
Binomial logistic regressions
Classification accuracy
Classification results
Feature extraction stages
Machine learning techniques
Morphological analysis
Morphological characteristic
Perception and recognition
Face recognition
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_a82b151f7ce94c215b4bbeaf6ed81853 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/9204 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
Analysis and Classification of Evoked Potentials in Response to Familiar and Unfamiliar Faces |
title |
Analysis and Classification of Evoked Potentials in Response to Familiar and Unfamiliar Faces |
spellingShingle |
Analysis and Classification of Evoked Potentials in Response to Familiar and Unfamiliar Faces Electroencephalography Evoked potentials Face recognition Machine learning Wavelet transform Artificial intelligence Bioelectric potentials Biomedical signal processing Brain Brain computer interface Electroencephalography Electrophysiology Learning systems Neurophysiology Wavelet transforms Binomial logistic regressions Classification accuracy Classification results Feature extraction stages Machine learning techniques Morphological analysis Morphological characteristic Perception and recognition Face recognition |
title_short |
Analysis and Classification of Evoked Potentials in Response to Familiar and Unfamiliar Faces |
title_full |
Analysis and Classification of Evoked Potentials in Response to Familiar and Unfamiliar Faces |
title_fullStr |
Analysis and Classification of Evoked Potentials in Response to Familiar and Unfamiliar Faces |
title_full_unstemmed |
Analysis and Classification of Evoked Potentials in Response to Familiar and Unfamiliar Faces |
title_sort |
Analysis and Classification of Evoked Potentials in Response to Familiar and Unfamiliar Faces |
dc.contributor.editor.none.fl_str_mv |
Callejas J.D.C. |
dc.subject.keywords.none.fl_str_mv |
Electroencephalography Evoked potentials Face recognition Machine learning Wavelet transform Artificial intelligence Bioelectric potentials Biomedical signal processing Brain Brain computer interface Electroencephalography Electrophysiology Learning systems Neurophysiology Wavelet transforms Binomial logistic regressions Classification accuracy Classification results Feature extraction stages Machine learning techniques Morphological analysis Morphological characteristic Perception and recognition Face recognition |
topic |
Electroencephalography Evoked potentials Face recognition Machine learning Wavelet transform Artificial intelligence Bioelectric potentials Biomedical signal processing Brain Brain computer interface Electroencephalography Electrophysiology Learning systems Neurophysiology Wavelet transforms Binomial logistic regressions Classification accuracy Classification results Feature extraction stages Machine learning techniques Morphological analysis Morphological characteristic Perception and recognition Face recognition |
description |
Brain activity during perception and recognition of faces have been studied by researchers with the purpose to develop brain-computer interfaces and to study neurological disorders. In this paper, we analyzed evoked potentials as neurophysiological indicators and developed a model based on signal processing and machine learning techniques to find descriptive patterns that allow the differentiation of familiar and unfamiliar faces. We considered wave components such as P1, N170, N250, P300, and N400 to describe the events. Morphological analysis and wavelet transform were used for the feature extraction stage, and support vector machines and binomial logistic regression were evaluated for the classification stage. The best classification results were obtained with the morphological characteristics, where the highest classification accuracy was 80% on average. © 2018 IEEE. |
publishDate |
2018 |
dc.date.issued.none.fl_str_mv |
2018 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:33:13Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:33:13Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_c94f |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
dc.type.hasversion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Conferencia |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
2018 IEEE ANDESCON, ANDESCON 2018 - Conference Proceedings |
dc.identifier.isbn.none.fl_str_mv |
9781538683729 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/9204 |
dc.identifier.doi.none.fl_str_mv |
10.1109/ANDESCON.2018.8564591 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
57205528869 57210822856 |
identifier_str_mv |
2018 IEEE ANDESCON, ANDESCON 2018 - Conference Proceedings 9781538683729 10.1109/ANDESCON.2018.8564591 Universidad Tecnológica de Bolívar Repositorio UTB 57205528869 57210822856 |
url |
https://hdl.handle.net/20.500.12585/9204 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.conferencedate.none.fl_str_mv |
22 August 2018 through 24 August 2018 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_16ec |
eu_rights_str_mv |
restrictedAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers Inc. |
publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers Inc. |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85060377163&doi=10.1109%2fANDESCON.2018.8564591&partnerID=40&md5=636208c54b94118642f0da270a42a1ab Scopus2-s2.0-85060377163 |
institution |
Universidad Tecnológica de Bolívar |
dc.source.event.none.fl_str_mv |
9th IEEE ANDESCON, ANDESCON 2018 |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/9204/1/MiniProdInv.png |
bitstream.checksum.fl_str_mv |
0cb0f101a8d16897fb46fc914d3d7043 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021789923147776 |
spelling |
Callejas J.D.C.Sanchez-Hernandez S.A.Contreras Ortiz, Sonia Helena2020-03-26T16:33:13Z2020-03-26T16:33:13Z20182018 IEEE ANDESCON, ANDESCON 2018 - Conference Proceedings9781538683729https://hdl.handle.net/20.500.12585/920410.1109/ANDESCON.2018.8564591Universidad Tecnológica de BolívarRepositorio UTB5720552886957210822856Brain activity during perception and recognition of faces have been studied by researchers with the purpose to develop brain-computer interfaces and to study neurological disorders. In this paper, we analyzed evoked potentials as neurophysiological indicators and developed a model based on signal processing and machine learning techniques to find descriptive patterns that allow the differentiation of familiar and unfamiliar faces. We considered wave components such as P1, N170, N250, P300, and N400 to describe the events. Morphological analysis and wavelet transform were used for the feature extraction stage, and support vector machines and binomial logistic regression were evaluated for the classification stage. The best classification results were obtained with the morphological characteristics, where the highest classification accuracy was 80% on average. © 2018 IEEE.Institute of Electrical and Electronics Engineers Colombia Section;Institute of Electrical and Electronics Engineers Consejo AndinoRecurso electrónicoapplication/pdfengInstitute of Electrical and Electronics Engineers Inc.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85060377163&doi=10.1109%2fANDESCON.2018.8564591&partnerID=40&md5=636208c54b94118642f0da270a42a1abScopus2-s2.0-850603771639th IEEE ANDESCON, ANDESCON 2018Analysis and Classification of Evoked Potentials in Response to Familiar and Unfamiliar Facesinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fElectroencephalographyEvoked potentialsFace recognitionMachine learningWavelet transformArtificial intelligenceBioelectric potentialsBiomedical signal processingBrainBrain computer interfaceElectroencephalographyElectrophysiologyLearning systemsNeurophysiologyWavelet transformsBinomial logistic regressionsClassification accuracyClassification resultsFeature extraction stagesMachine learning techniquesMorphological analysisMorphological characteristicPerception and recognitionFace recognition22 August 2018 through 24 August 2018Lopera, R.F., Procesamiento de caras: Bases neurológicas, trastornos y evaluación (2000) Revista de Neurología, 30 (5), pp. 1-5Pérez, Y.B., (2014) Memoria de Rostros y Reconocimiento Emocional: Generalidades Teóricas, Bases Neurales y Patologías Asociadas Face Memory and Emotional Recognition: Theory, Neural Substrates and Related Pathologies, 28 (116), pp. 27-40Olivares, E.I., Saavedra, C., Iglesias, J., (2012) Potenciales Evocados Como Marcadores Neurofisiológicos de la Percepción y El Reconocimiento de Caras, pp. 27-38Özbeyaz, A., Arica, S., Classification of EEG signals of familiar and unfamiliar face stimuli exploiting most discriminative channels (2017) Turkish J. Electr. Eng. Comput. Sci., 25, pp. 3342-3354Li, Y., Single Trial EEG Classification Applied to a Face Recognition Experiment Using Different Feature Extraction Methods (2015) IEEE Eng Med Biol Soc., pp. 7246-7249Henson, R.N., Multi-modal face dataset (2009) Funct. Imaging Lab., p. 2018. , http://www.fil.ion.ucl.ac.uk/spm/data/mmfaces/(1991) SPM Software-Statistical Parametric Mapping, pp. 3-4. , http://www.fil.ion.ucl.ac.uk/spm/software/, Members & collaborators of the Wellcome Trust Centre for Neuroimaging 13/04/2012Barry, R., Johnstone, S., Clarke, A., A review of electrophysiology in attention-deficit/hyperactivity disorder: II. Event-related potentials (2003) Clinical Neurophysiology, 114 (2), pp. 184-198Restrepo, F., Tamayo-Orrego, L., Parra Sanchez, J., Vera Gonzalez, A., Moscoso Ariza, O., P300-wave modulation in a group of Colombian children with attention deficit/hyperactivity disorder (2011) Acta Neurol. Colomb, 27 (3), pp. 146-153Chethan, P., Cox, M., Frequency characteristics of wavelets (2002) IEEE Transactions on Power Delivery, 17 (3), pp. 800-804Ahmadi, A., Dehzangi, O., Jafari, R., Brain-computer interface signal processing algorithms: A computational cost vs accuracy analysis for wearable computers (2012) Wearable and Implantable Body Sensor Networks (BSN), 2012 Ninth International Conference On. IEEE, pp. 40-45Zheng, T., Ernest, H., Smitha, K.G., Vinod, A.P., (2015) Detection of Familiar and Unfamiliar Images Using EEG-based Brain-Computer InterfaceHenson, R.N., Wakeman, D.G., Litvak, V., Friston, K.J., Trujillo-Barreto, N.J., (2011) A Parametric Empirical Bayesian Framework for the EEG / MEG Inverse Problem: Generative Models for Multi-subject and Multi-modal Integration, 5, pp. 1-16. , AugustIssn, O., (2017) Actualidades en Psicología Memoria de Rostros y Reconocimiento Emocional: Generalidades Teóricas, Bases Neurales y Patologías Asociadas Face Memory and Emotional Recognition: Theory, Neural, pp. 1-13Liu, J., Higuchi, M., Marantz, A., Kanwisher, N., Stages of processing in face perception: An MEG study (2002) Nat. Neuroscience, 5, pp. 910-916Alexandra, P., Cabrera, C., (2011) Extracción y Selección de Características Discriminantes para la Detección de TDAH en Registros de Potenciales Evocados Cognitivoshttp://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9204/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9204oai:repositorio.utb.edu.co:20.500.12585/92042023-05-25 15:52:39.134Repositorio Institucional UTBrepositorioutb@utb.edu.co |