A machine learning model for triage in lean pediatric emergency departments

High demand periods and under-staffing due to financial constraints cause Emergency Departments (EDs) to frequently exhibit over-crowding and slow response times to provide adequate patient care. In response, Lean Thinking has been applied to help alleviate some of these issues and improve patient h...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2016
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/8997
Acceso en línea:
https://hdl.handle.net/20.500.12585/8997
Palabra clave:
Emergency department
Fast track
Lean
Logistic regression
Machine learning
Neural networks
PCA
SVM
Triage
Artificial intelligence
Complex networks
Emergency rooms
Hospitals
Neural networks
Patient monitoring
Patient treatment
Pediatrics
Emergency departments
Fast tracks
Lean
Logistic regressions
Triage
Learning systems
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_a6f8e30c30d21e99e53174a46a67378b
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/8997
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv A machine learning model for triage in lean pediatric emergency departments
title A machine learning model for triage in lean pediatric emergency departments
spellingShingle A machine learning model for triage in lean pediatric emergency departments
Emergency department
Fast track
Lean
Logistic regression
Machine learning
Neural networks
PCA
SVM
Triage
Artificial intelligence
Complex networks
Emergency rooms
Hospitals
Neural networks
Patient monitoring
Patient treatment
Pediatrics
Emergency departments
Fast tracks
Lean
Logistic regressions
Triage
Learning systems
title_short A machine learning model for triage in lean pediatric emergency departments
title_full A machine learning model for triage in lean pediatric emergency departments
title_fullStr A machine learning model for triage in lean pediatric emergency departments
title_full_unstemmed A machine learning model for triage in lean pediatric emergency departments
title_sort A machine learning model for triage in lean pediatric emergency departments
dc.contributor.editor.none.fl_str_mv Escalante H.J.
Montes-y-Gomez M.
Segura A.
de Dios Murillo J.
dc.subject.keywords.none.fl_str_mv Emergency department
Fast track
Lean
Logistic regression
Machine learning
Neural networks
PCA
SVM
Triage
Artificial intelligence
Complex networks
Emergency rooms
Hospitals
Neural networks
Patient monitoring
Patient treatment
Pediatrics
Emergency departments
Fast tracks
Lean
Logistic regressions
Triage
Learning systems
topic Emergency department
Fast track
Lean
Logistic regression
Machine learning
Neural networks
PCA
SVM
Triage
Artificial intelligence
Complex networks
Emergency rooms
Hospitals
Neural networks
Patient monitoring
Patient treatment
Pediatrics
Emergency departments
Fast tracks
Lean
Logistic regressions
Triage
Learning systems
description High demand periods and under-staffing due to financial constraints cause Emergency Departments (EDs) to frequently exhibit over-crowding and slow response times to provide adequate patient care. In response, Lean Thinking has been applied to help alleviate some of these issues and improve patient handling, with success. Lean approaches in EDs include separate patient streams, with low-complexity patients treated in a so-called Fast Track, in order to reduce total waiting time and to free-up capacity to treat more complicated patients in a timely manner. In this work we propose the use of Machine Learning techniques in a Lean Pediatric ED to correctly predict which patients should be admitted to the Fast Track, given their signs and symptoms. Charts from 1205 patients of the emergency department of Hospital Napoleón Franco Pareja in Cartagena - Colombia, were used to construct a dataset and build several predictive models. Validation and test results are promising and support the validity of this approach and further research on the subject. © Springer International Publishing AG 2016.
publishDate 2016
dc.date.issued.none.fl_str_mv 2016
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:32:44Z
dc.date.available.none.fl_str_mv 2020-03-26T16:32:44Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_c94f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.hasVersion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Conferencia
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 10022 LNAI, pp. 212-221
dc.identifier.isbn.none.fl_str_mv 9783319479545
dc.identifier.issn.none.fl_str_mv 03029743
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/8997
dc.identifier.doi.none.fl_str_mv 10.1007/978-3-319-47955-2_18
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 55782426500
57191839719
55782490400
identifier_str_mv Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 10022 LNAI, pp. 212-221
9783319479545
03029743
10.1007/978-3-319-47955-2_18
Universidad Tecnológica de Bolívar
Repositorio UTB
55782426500
57191839719
55782490400
url https://hdl.handle.net/20.500.12585/8997
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.conferencedate.none.fl_str_mv 23 November 2016 through 25 November 2016
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessRights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer Verlag
publisher.none.fl_str_mv Springer Verlag
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-84994153904&doi=10.1007%2f978-3-319-47955-2_18&partnerID=40&md5=c13dcd2b943033797d17b5c57ff8344a
institution Universidad Tecnológica de Bolívar
dc.source.event.none.fl_str_mv 15th Ibero-American Conference on Advances in Artificial Intelligence, IBERAMIA 2016
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/8997/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021705283141632
spelling Escalante H.J.Montes-y-Gomez M.Segura A.de Dios Murillo J.Caicedo-Torres W.García G.Pinzón H.2020-03-26T16:32:44Z2020-03-26T16:32:44Z2016Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 10022 LNAI, pp. 212-221978331947954503029743https://hdl.handle.net/20.500.12585/899710.1007/978-3-319-47955-2_18Universidad Tecnológica de BolívarRepositorio UTB557824265005719183971955782490400High demand periods and under-staffing due to financial constraints cause Emergency Departments (EDs) to frequently exhibit over-crowding and slow response times to provide adequate patient care. In response, Lean Thinking has been applied to help alleviate some of these issues and improve patient handling, with success. Lean approaches in EDs include separate patient streams, with low-complexity patients treated in a so-called Fast Track, in order to reduce total waiting time and to free-up capacity to treat more complicated patients in a timely manner. In this work we propose the use of Machine Learning techniques in a Lean Pediatric ED to correctly predict which patients should be admitted to the Fast Track, given their signs and symptoms. Charts from 1205 patients of the emergency department of Hospital Napoleón Franco Pareja in Cartagena - Colombia, were used to construct a dataset and build several predictive models. Validation and test results are promising and support the validity of this approach and further research on the subject. © Springer International Publishing AG 2016.Recurso electrónicoapplication/pdfengSpringer Verlaghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84994153904&doi=10.1007%2f978-3-319-47955-2_18&partnerID=40&md5=c13dcd2b943033797d17b5c57ff8344a15th Ibero-American Conference on Advances in Artificial Intelligence, IBERAMIA 2016A machine learning model for triage in lean pediatric emergency departmentsinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fEmergency departmentFast trackLeanLogistic regressionMachine learningNeural networksPCASVMTriageArtificial intelligenceComplex networksEmergency roomsHospitalsNeural networksPatient monitoringPatient treatmentPediatricsEmergency departmentsFast tracksLeanLogistic regressionsTriageLearning systems23 November 2016 through 25 November 2016Aplin, S., Baines, D., De Lima, J., Use of the ASA physical status grading system in pediatric practice (2007) Paediatr. Anaesth., 17 (3), pp. 216-222Beyer, J.E., Turner, S.B., Jones, L., Young, L., Onikul, R., Bohaty, B., The alternate forms reliability of the Oucher pain scale (2005) Pain Manag. Nurs, 6 (1), pp. 10-17Bonadio, W.A., Hennes, H., Smith, D., Ruffing, R., Melzer-Lange, M., Lye, P., Isaacman, D., Reliability of observation variables in distinguishing infectious outcome of febrile young infants (1993) Pediatr. Infect. Dis. J, 12 (2), pp. 111-114Carrol, E., Riordan, F., Thomson, A., Sills, J., Hart, C., The role of the Glasgow meningococcal septicaemia prognostic score in the emergency management of meningococcal disease (1999) Arch. Dis. Child, 81 (3), p. 278. , http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1718049/Cortes, C., Vapnik, V., Support-vector networks (1995) Mach. Learn, 20 (3), pp. 273-297. , http://dx.doi.org/10.1007/BF00994018Demšar, J., Curk, T., Erjavec, A., Gorup, Č., Hočevar, T., Milutinovič, M., Možina, M., Zupan, B., Orange: Data mining toolbox in python (2013) J. Mach. Learn. Res, 14, pp. 2349-2353. , http://jmlr.org/papers/v14/demsar13a.htmlFerres, J., Comparison of two nebulized treatments in wheezing infants (1988) Eur. Respir. J, 1, p. 306Fitzgerald, G., Triage revisited (1998) Emerg. Med, 10 (4), pp. 291-293. , http://dx.doi.org/10.1111/j.1442-2026.1998.tb00694.xHerndon, R., (2006) Handbook of Neurologic Rating Scales, , http://books.google.com.co/books?id=w1yPmehSZ2cC, 2nd edn. Demos Medical Publishing, New YorkHolden, R.J., Lean thinking in emergency departments: A critical review (2010) Ann. Emerg. Med, 57 (3), pp. 265-278. , http://dx.doi.org/10.1016/j.annemergmed.2010.08.001Huppler, A.R., Eickhoff, J.C., Wald, E.R., Performance of low-risk criteria in the evaluation of young infants with fever: Review of the literature (2010) Pediatrics, 125 (2), pp. 228-233. , http://pediatrics.aappublications.org/content/125/2/228Ieraci, S., Digiusto, E., Sonntag, P., Dann, L., Fox, D., Streaming by case complexity: Evaluation of a model for emergency department fast track (2008) Emerg. Med. Australas, 20 (3), pp. 241-249. , http://dx.doi.org/10.1111/j.1742-6723.2008.01087.xJolliffe, I., (2002) Principal Component Analysis. Springer Series in Statistics, , http://books.google.com.co/books?id=TtVF-ao4fI8C, Springer, BerlinKelly, A.M., Bryant, M., Cox, L., Jolley, D., Improving emergency department efficiency by patient streaming to outcomes-based teams (2007) Aust. Health Rev, 31 (1), pp. 16-21. , http://www.publish.csiro.au/paper/AH070016McCarthy, P.L., Sharpe, M.R., Spiesel, S.Z., Dolan, T.F., Forsyth, B.W., Dewitt, T.G., Fink, H.D., Cicchetti, D.V., Observation scales to identify serious illness in febrile children (1982) Pediatrics, 70 (5), pp. 802-809. , http://pediatrics.aappublications.org/content/70/5/802McCullagh, P., Nelder, J., (1989) Generalized Linear Models, , http://books.google.co.uk/books?id=h9kFH2FfBkC, 2nd edn. Chapman & Hall/CRC Monographs on Statistics & Applied Probability. Taylor & Francis, Abingdon-on-ThamesMintegui, R.S., Sanchez, E.J., Benito, F.J., Angulo, B.P., Gastiasoro, C.L., Ortiz, A.A., Usefulness of oxygen saturation in the assessment of children with moderated laryngitis (1996) An. Esp. Pediatr, 45 (3), pp. 261-263Ng, D., Vail, G., Thomas, S., Schmidt, N., Applying the lean principles of the Toyota production system to reduce wait times in the emergency department (2010) CJEM, 12 (1), pp. 50-57Paganini, H., de Santolaya, P., Álvarez, M., Araña Rosaínz, M.D.J., Arteaga Bonilla, R., Bonilla, A., Caniza, M., Scopinaro, M., Diagn (2011) Revista Chilena De Infectolog, 28, pp. 10-38. , http://www.scielo.cl/scielo.php?script=sciarttext&pid=S0716-10182011000400003&nrm=isoRumelhart, D.E., Hinton, G.E., Williams, R.J., Parallel distributed processing: Explorations in the microstructure of cognition (1986) Learning Internal Representations by Error Propagation, 1, pp. 318-362. , http://dl.acm.org/citation.cfm?id=104279.104293, MIT Press, CambridgeScarfone, R.J., Fuchs, S.M., Nager, A.L., Shane, S.A., Controlled trial of oral prednisone in the emergency department treatment of children with acute asthma (1993) Pediatrics, 92 (4), pp. 513-518Velasco-Pérez, G., Escalera analg (2014) Acta pedi´atrica De M, 35, pp. 249-255. , http://www.scielo.org.mx/scielo.php?script=sciarttext&pid=S0186-23912014000300011&nrm=isoWomack, J.P., Jones, D.T., Roos, D., (1991) The Machine that Changed The World: The Story of Lean Production, , https://books.google.de/books?id=Jz4zog27W7gC, The MIT International Motor Vehicle Program. Harper- Collins, New Yorkhttp://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/8997/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/8997oai:repositorio.utb.edu.co:20.500.12585/89972021-02-02 14:15:10.598Repositorio Institucional UTBrepositorioutb@utb.edu.co