Bibliometric Analysis of Global Trends around Hydrogen Production Based on the Scopus Database in the Period 2011–2021

Given the increase in population and energy demand worldwide, alternative methods have been adopted for the production of hydrogen as a clean energy source. This energy offers an alternative energy source due to its high energy content, and without emissions to the environment. In this bibliometric...

Full description

Autores:
Camargo, Luis
Comas, Daniel
Cardenas Escorcia, Yulineth
Alviz-Meza, Anibal
Carrillo Caballero, Gaylord
Portnoy, Ivan
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12298
Acceso en línea:
https://hdl.handle.net/20.500.12585/12298
https://doi.org/10.3390/en16010087
Palabra clave:
Water;
Regenerative Fuel Cells;
Alkaline Water
LEMB
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_a6e1774c80e857f215d33393dd1b8258
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12298
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Bibliometric Analysis of Global Trends around Hydrogen Production Based on the Scopus Database in the Period 2011–2021
title Bibliometric Analysis of Global Trends around Hydrogen Production Based on the Scopus Database in the Period 2011–2021
spellingShingle Bibliometric Analysis of Global Trends around Hydrogen Production Based on the Scopus Database in the Period 2011–2021
Water;
Regenerative Fuel Cells;
Alkaline Water
LEMB
title_short Bibliometric Analysis of Global Trends around Hydrogen Production Based on the Scopus Database in the Period 2011–2021
title_full Bibliometric Analysis of Global Trends around Hydrogen Production Based on the Scopus Database in the Period 2011–2021
title_fullStr Bibliometric Analysis of Global Trends around Hydrogen Production Based on the Scopus Database in the Period 2011–2021
title_full_unstemmed Bibliometric Analysis of Global Trends around Hydrogen Production Based on the Scopus Database in the Period 2011–2021
title_sort Bibliometric Analysis of Global Trends around Hydrogen Production Based on the Scopus Database in the Period 2011–2021
dc.creator.fl_str_mv Camargo, Luis
Comas, Daniel
Cardenas Escorcia, Yulineth
Alviz-Meza, Anibal
Carrillo Caballero, Gaylord
Portnoy, Ivan
dc.contributor.author.none.fl_str_mv Camargo, Luis
Comas, Daniel
Cardenas Escorcia, Yulineth
Alviz-Meza, Anibal
Carrillo Caballero, Gaylord
Portnoy, Ivan
dc.subject.keywords.spa.fl_str_mv Water;
Regenerative Fuel Cells;
Alkaline Water
topic Water;
Regenerative Fuel Cells;
Alkaline Water
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description Given the increase in population and energy demand worldwide, alternative methods have been adopted for the production of hydrogen as a clean energy source. This energy offers an alternative energy source due to its high energy content, and without emissions to the environment. In this bibliometric analysis of energy production using electrolysis and taking into account the different forms of energy production. In this analysis, it was possible to evaluate the research trends based on the literature in the Scopus database during the years 2011–2021. The results showed a growing interest in hydrogen production from electrolysis and other mechanisms, with China being the country with the highest number of publications and the United States TOP in citations. The trend shows that during the first four years of this study (2011–2014), the average number of publications was 74 articles per year, from 2015 to 2021 where the growth is an average of 209 articles, the journal that published the most on this topic is Applied Energy, followed by Energy, contributing with almost 33% in the research area. Lastly, the keyword analysis identified six important research points for future discussions, which we have termed clusters. The study concludes that new perspectives on clean hydrogen energy generation, environmental impacts, and social acceptance could contribute to the positive evolution of the hydrogen energy industry. © 2022 by the authors.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-07-21T15:53:30Z
dc.date.available.none.fl_str_mv 2023-07-21T15:53:30Z
dc.date.issued.none.fl_str_mv 2023
dc.date.submitted.none.fl_str_mv 2023
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
status_str draft
dc.identifier.citation.spa.fl_str_mv Camargo, L., Comas, D., Escorcia, Y. C., Alviz-Meza, A., Caballero, G. C., & Portnoy, I. (2023). Bibliometric analysis of global trends around hydrogen production based on the scopus database in the period 2011–2021. Energies, 16 (87), 1-25.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12298
dc.identifier.doi.none.fl_str_mv https://doi.org/10.3390/en16010087
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Camargo, L., Comas, D., Escorcia, Y. C., Alviz-Meza, A., Caballero, G. C., & Portnoy, I. (2023). Bibliometric analysis of global trends around hydrogen production based on the scopus database in the period 2011–2021. Energies, 16 (87), 1-25.
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12298
https://doi.org/10.3390/en16010087
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 25 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv Energies, 16 (87), 1-25.
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12298/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12298/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12298/1/energies-16-00087-v2%20%281%29.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12298/4/energies-16-00087-v2%20%281%29.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12298/5/energies-16-00087-v2%20%281%29.pdf.jpg
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
ce86e82a1174c279878d3764f95e5dc8
c23e1f00d233de3c9f62358581ee9a14
6b485a63ff6b33c3c6eadf11a4bdd0da
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021600496844800
spelling Camargo, Luisdbf33e2f-c1f1-4c46-b8cc-42ea7dfbf469Comas, Danielc7b4e35f-0fb3-4661-ba1d-7e169afde6adCardenas Escorcia, Yulineth35b31f1a-b0e0-450b-b52e-9f46d2fb6993Alviz-Meza, Anibal985ee3fd-2926-4b3f-a240-a73fbfd22aebCarrillo Caballero, Gaylorde9b72804-3ba9-405f-8ba2-b721c6f183bfPortnoy, Ivanff8a429a-f46a-4cb5-bb6a-9b21ed7d366b2023-07-21T15:53:30Z2023-07-21T15:53:30Z20232023Camargo, L., Comas, D., Escorcia, Y. C., Alviz-Meza, A., Caballero, G. C., & Portnoy, I. (2023). Bibliometric analysis of global trends around hydrogen production based on the scopus database in the period 2011–2021. Energies, 16 (87), 1-25.https://hdl.handle.net/20.500.12585/12298https://doi.org/10.3390/en16010087Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarGiven the increase in population and energy demand worldwide, alternative methods have been adopted for the production of hydrogen as a clean energy source. This energy offers an alternative energy source due to its high energy content, and without emissions to the environment. In this bibliometric analysis of energy production using electrolysis and taking into account the different forms of energy production. In this analysis, it was possible to evaluate the research trends based on the literature in the Scopus database during the years 2011–2021. The results showed a growing interest in hydrogen production from electrolysis and other mechanisms, with China being the country with the highest number of publications and the United States TOP in citations. The trend shows that during the first four years of this study (2011–2014), the average number of publications was 74 articles per year, from 2015 to 2021 where the growth is an average of 209 articles, the journal that published the most on this topic is Applied Energy, followed by Energy, contributing with almost 33% in the research area. Lastly, the keyword analysis identified six important research points for future discussions, which we have termed clusters. The study concludes that new perspectives on clean hydrogen energy generation, environmental impacts, and social acceptance could contribute to the positive evolution of the hydrogen energy industry. © 2022 by the authors.25 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Energies, 16 (87), 1-25.Bibliometric Analysis of Global Trends around Hydrogen Production Based on the Scopus Database in the Period 2011–2021info:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Water;Regenerative Fuel Cells;Alkaline WaterLEMBCartagena de IndiasTemiz, M., Dincer, I. Concentrated solar driven thermochemical hydrogen production plant with thermal energy storage and geothermal systems (2021) Energy, 219, art. no. 119554. Cited 51 times. https://www.journals.elsevier.com/energy doi: 10.1016/j.energy.2020.119554Su, C.-W., Khan, K., Umar, M., Chang, T. Renewable energy in prism of technological innovation and economic uncertainty (2022) Renewable Energy, 189, pp. 467-478. Cited 17 times. http://www.journals.elsevier.com/renewable-and-sustainable-energy-reviews/ doi: 10.1016/j.renene.2022.02.110Sajjad, U., Abbas, N., Hamid, K., Abbas, S., Hussain, I., Ammar, S.M., Sultan, M., (...), Wang, C.C. A review of recent advances in indirect evaporative cooling technology (Open Access) (2021) International Communications in Heat and Mass Transfer, 122, art. no. 105140. Cited 48 times. https://www.journals.elsevier.com/international-communications-in-heat-and-mass-transfer doi: 10.1016/j.icheatmasstransfer.2021.105140Sebbahi, S., Nabil, N., Alaoui-Belghiti, A., Laasri, S., Rachidi, S., Hajjaji, A. Assessment of the three most developed water electrolysis technologies: Alkaline Water Electrolysis, Proton Exchange Membrane and Solid-Oxide Electrolysis (2022) Materials Today: Proceedings, Part 1 66, pp. 140-145. Cited 15 times. https://www.sciencedirect.com/journal/materials-today-proceedings doi: 10.1016/j.matpr.2022.04.264Nicoletti, G., Arcuri, N., Nicoletti, G., Bruno, R. A technical and environmental comparison between hydrogen and some fossil fuels (2015) Energy Conversion and Management, 89, pp. 205-213. Cited 280 times. https://www.journals.elsevier.com/energy-conversion-and-management doi: 10.1016/j.enconman.2014.09.057Yu, M., Wang, K., Vredenburg, H. Insights into low-carbon hydrogen production methods: Green, blue and aqua hydrogen (2021) International Journal of Hydrogen Energy, 46 (41), pp. 21261-21273. Cited 156 times. http://www.journals.elsevier.com/international-journal-of-hydrogen-energy/ doi: 10.1016/j.ijhydene.2021.04.016Deng, W., Pei, W., Yi, Y., Zhuang, Y., Kong, L. Study on enhancing hydrogen production potential from renewable energy in multi-terminal DC system (2021) Energy Reports, 7, pp. 395-404. Cited 3 times. http://www.journals.elsevier.com/energy-reports/ doi: 10.1016/j.egyr.2021.08.033Wei, D., Zhang, L., Alotaibi, A.A., Fang, J., Alshahri, A.H., Almitani, K.H. Transient simulation and comparative assessment of a hydrogen production and storage system with solar and wind energy using TRNSYS (2022) International Journal of Hydrogen Energy, 47 (62), pp. 26646-26653. Cited 7 times. http://www.journals.elsevier.com/international-journal-of-hydrogen-energy/ doi: 10.1016/j.ijhydene.2022.02.157Ma, B., Liu, S., Pei, F., Su, Z., Yu, J., Hao, C., Li, Q., (...), Gan, Z. Development of Hydrogen Energy Storage Industry and Research Progress of Hydrogen Production Technology (2021) Proceedings of 2021 IEEE 4th International Electrical and Energy Conference, CIEEC 2021, art. no. 9510748. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9510195 ISBN: 978-172817149-4 doi: 10.1109/CIEEC50170.2021.9510748Yue, M., Lambert, H., Pahon, E., Roche, R., Jemei, S., Hissel, D. Hydrogen energy systems: A critical review of technologies, applications, trends and challenges (2021) Renewable and Sustainable Energy Reviews, 146, art. no. 111180. Cited 406 times. https://www.journals.elsevier.com/renewable-and-sustainable-energy-reviews doi: 10.1016/j.rser.2021.111180Bacquart, T., Arrhenius, K., Persijn, S., Rojo, A., Auprêtre, F., Gozlan, B., Moore, N., (...), Haloua, F. Hydrogen fuel quality from two main production processes: Steam methane reforming and proton exchange membrane water electrolysis (Open Access) (2019) Journal of Power Sources, 444, art. no. 227170. Cited 31 times. https://www.journals.elsevier.com/journal-of-power-sources doi: 10.1016/j.jpowsour.2019.227170Simoes, S.G., Catarino, J., Picado, A., Lopes, T.F., di Berardino, S., Amorim, F., Gírio, F., (...), Ponce de Leão, T. Water availability and water usage solutions for electrolysis in hydrogen production (Open Access) (2021) Journal of Cleaner Production, 315, art. no. 128124. Cited 27 times. https://www.journals.elsevier.com/journal-of-cleaner-production doi: 10.1016/j.jclepro.2021.128124Manna, J., Jha, P., Sarkhel, R., Banerjee, C., Tripathi, A.K., Nouni, M.R. Opportunities for green hydrogen production in petroleum refining and ammonia synthesis industries in India (2021) International Journal of Hydrogen Energy, 46 (77), pp. 38212-38231. Cited 36 times. http://www.journals.elsevier.com/international-journal-of-hydrogen-energy/ doi: 10.1016/j.ijhydene.2021.09.064Liu, W., Zuo, H., Wang, J., Xue, Q., Ren, B., Yang, F. The production and application of hydrogen in steel industry (2021) International Journal of Hydrogen Energy, 46 (17), pp. 10548-10569. Cited 129 times. http://www.journals.elsevier.com/international-journal-of-hydrogen-energy/ doi: 10.1016/j.ijhydene.2020.12.123Paul, A., Symes, M.D. Decoupled electrolysis for water splitting (2021) Current Opinion in Green and Sustainable Chemistry, 29, art. no. 100453. Cited 13 times. http://www.journals.elsevier.com/current-opinion-in-green-and-sustainable-chemistry doi: 10.1016/j.cogsc.2021.100453Liu, T., Wang, J., Yang, X., Gong, M. A review of pulse electrolysis for efficient energy conversion and chemical production (2021) Journal of Energy Chemistry, 59, pp. 69-82. Cited 22 times. elsevier.com/journals/journal-of-energy-chemistry/2095-4956 doi: 10.1016/j.jechem.2020.10.027d'Amore-Domenech, R., Santiago, Ó., Leo, T.J. Multicriteria analysis of seawater electrolysis technologies for green hydrogen production at sea (2020) Renewable and Sustainable Energy Reviews, 133, art. no. 110166. Cited 66 times. https://www.journals.elsevier.com/renewable-and-sustainable-energy-reviews doi: 10.1016/j.rser.2020.110166Sui, Y., Abdulkreem AL-Huqail, A., Suhatril, M., Abed, A.M., Zhao, Y., Assilzadeh, H., Amine Khadimallah, M., (...), Elhosiny Ali, H. Hydrogen energy of mining waste waters: Extraction and analysis of solving issues (2023) Fuel, Part 1 331, art. no. 125685. http://www.journals.elsevier.com/fuel/ doi: 10.1016/j.fuel.2022.125685Terlouw, T., Bauer, C., McKenna, R., Mazzotti, M. Large-scale hydrogen production via water electrolysis: a techno-economic and environmental assessment (2022) Energy and Environmental Science, 15 (9), pp. 3583-3602. Cited 38 times. http://pubs.rsc.org/en/journals/journal/ee doi: 10.1039/d2ee01023bLi, H., Liang, X., Li, Y., Lin, F. Performance of High-Layer-Thickness Ti6Al4V Fabricated by Electron Beam Powder Bed Fusion under Different Accelerating Voltage Values (Open Access) (2022) Materials, 15 (5), art. no. 1878. Cited 2 times. https://www.mdpi.com/1996-1944/15/5/1878/pdf doi: 10.3390/ma15051878Alhassan, M., Jalil, A.A., Nabgan, W., Hamid, M.Y.S., Bahari, M.B., Ikram, M. Bibliometric studies and impediments to valorization of dry reforming of methane for hydrogen production (2022) Fuel, 328, art. no. 125240. Cited 8 times. http://www.journals.elsevier.com/fuel/ doi: 10.1016/j.fuel.2022.125240Raman, R., Nair, V.K., Prakash, V., Patwardhan, A., Nedungadi, P. Green-hydrogen research: What have we achieved, and where are we going? Bibliometrics analysis (Open Access) (2022) Energy Reports, 8, pp. 9242-9260. Cited 18 times. http://www.journals.elsevier.com/energy-reports/ doi: 10.1016/j.egyr.2022.07.058Bakır, M., Özdemir, E., Akan, Ş., Atalık, Ö. A bibliometric analysis of airport service quality (Open Access) (2022) Journal of Air Transport Management, 104, art. no. 102273. Cited 5 times. www.elsevier.com/inca/publications/store/3/0/4/3/8/ doi: 10.1016/j.jairtraman.2022.102273Aria, M., Cuccurullo, C. bibliometrix: An R-tool for comprehensive science mapping analysis (Open Access) (2017) Journal of Informetrics, 11 (4), pp. 959-975. Cited 3012 times. http://www.journals.elsevier.com/journal-of-informetrics/ doi: 10.1016/j.joi.2017.08.007Souley Agbodjan, Y., Wang, J., Cui, Y., Liu, Z., Luo, Z. Bibliometric analysis of zero energy building research, challenges and solutions (Open Access) (2022) Solar Energy, 244, pp. 414-433. Cited 4 times. www.elsevier.com/inca/publications/store/3/2/9/index.htt doi: 10.1016/j.solener.2022.08.061Choudhary, A.K., Oluikpe, P.I., Harding, J.A., Carrillo, P.M. The needs and benefits of Text Mining applications on Post-Project Reviews (2009) Computers in Industry, 60 (9), pp. 728-740. Cited 56 times. doi: 10.1016/j.compind.2009.05.006Ghazinoory, S., Ameri, F., Farnoodi, S. An application of the text mining approach to select technology centers of excellence (2013) Technological Forecasting and Social Change, 80 (5), pp. 918-931. Cited 18 times. doi: 10.1016/j.techfore.2012.09.001van Eck, N.J., Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping (2010) Scientometrics, 84 (2), pp. 523-538. Cited 6782 times. http://www.springerlink.com/content/0138-9130 doi: 10.1007/s11192-009-0146-3Sridhar, A., Ponnuchamy, M., Senthil Kumar, P., Kapoor, A., Xiao, L. Progress in the production of hydrogen energy from food waste: A bibliometric analysis (2022) International Journal of Hydrogen Energy, 47 (62), pp. 26326-26354. Cited 17 times. http://www.journals.elsevier.com/international-journal-of-hydrogen-energy/ doi: 10.1016/j.ijhydene.2021.09.258Au-Yong-Oliveira, M., Pesqueira, A., Sousa, M.J., Dal Mas, F., Soliman, M. The Potential of Big Data Research in HealthCare for Medical Doctors’ Learning (2021) Journal of Medical Systems, 45 (1), art. no. 13. Cited 28 times. https://link.springer.com/journal/10916 doi: 10.1007/s10916-020-01691-7Olabi, A.G., bahri, A.S., Abdelghafar, A.A., Baroutaji, A., Sayed, E.T., Alami, A.H., Rezk, H., (...), Abdelkareem, M.A. Large-vscale hydrogen production and storage technologies: Current status and future directions (2021) International Journal of Hydrogen Energy, 46 (45), pp. 23498-23528. Cited 152 times. http://www.journals.elsevier.com/international-journal-of-hydrogen-energy/ doi: 10.1016/j.ijhydene.2020.10.110Abe, J.O., Popoola, A.P.I., Ajenifuja, E., Popoola, O.M. Hydrogen energy, economy and storage: Review and recommendation (2019) International Journal of Hydrogen Energy, 44 (29), pp. 15072-15086. Cited 1358 times. http://www.journals.elsevier.com/international-journal-of-hydrogen-energy/ doi: 10.1016/j.ijhydene.2019.04.068Chamoun, R., Demirci, U.B., Miele, P. Cyclic dehydrogenation-(Re)hydrogenation with hydrogen-storage materials: An overview (2015) Energy Technology, 3 (2), pp. 100-117. Cited 36 times. http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2194-4296 doi: 10.1002/ente.201402136Nejat Veziroglu, T. Conversion to hydrogen economy (2012) Energy Procedia, 29, pp. 654-656. Cited 28 times. http://www.sciencedirect.com/science/journal/18766102 ISBN: 978-162748317-9 doi: 10.1016/j.egypro.2012.09.075Sahaym, U., Norton, M.G. Advances in the application of nanotechnology in enabling a 'hydrogen economy' (2008) Journal of Materials Science, 43 (16), pp. 5395-5429. Cited 205 times. doi: 10.1007/s10853-008-2749-0Zhang, Y.-H., Jia, Z.-C., Yuan, Z.-M., Yang, T., Qi, Y., Zhao, D.-L. Development and Application of Hydrogen Storage (Open Access) (2015) Journal of Iron and Steel Research International, 22 (9), art. no. 30069, pp. 757-770. Cited 92 times. https://rd.springer.com/journal/volumesAndIssues/42243 doi: 10.1016/S1006-706X(15)30069-8Veziroǧlu, T.N., Şahin, S. 21st Century's energy: Hydrogen energy system (2008) Energy Conversion and Management, 49 (7), pp. 1820-1831. Cited 411 times. doi: 10.1016/j.enconman.2007.08.015Rand, D.A.J. A journey on the electrochemical road to sustainability (2011) Journal of Solid State Electrochemistry, 15 (7-8), pp. 1579-1622. Cited 61 times. doi: 10.1007/s10008-011-1410-zSahlberg, M. Light-Metal Hydrides for Hydrogen Storage (2009) PhD Thesis. Cited 4 times. Usala Universitet, Usala, SwedenMarbán, G., Valdés-Solís, T. Towards the hydrogen economy? (2007) International Journal of Hydrogen Energy, 32 (12), pp. 1625-1637. Cited 653 times. http://www.journals.elsevier.com/international-journal-of-hydrogen-energy/ doi: 10.1016/j.ijhydene.2006.12.017Producción, Almacenamiento y Distribución de Hidrógeno. España Available online http://www2.udg.edu/Portals/88/proc_industrials/5%20-%20Otros%20Combustibles-Hidrogeno.pdfMazzeo, D., Herdem, M.S., Matera, N., Wen, J.Z. Green hydrogen production: Analysis for different single or combined large-scale photovoltaic and wind renewable systems (Open Access) (2022) Renewable Energy, 200, pp. 360-378. Cited 26 times. http://www.journals.elsevier.com/renewable-and-sustainable-energy-reviews/ doi: 10.1016/j.renene.2022.09.057Cloete, S., Arnaiz del Pozo, C., Jiménez Álvaro, Á. System-friendly process design: Optimizing blue hydrogen production for future energy systems (2022) Energy, 259, art. no. 124954. Cited 6 times. https://www.journals.elsevier.com/energy doi: 10.1016/j.energy.2022.124954(2016) International Energy Outlook 2016. Volume 0484. Cited 569 times. Available online www.eia.govBrockway, P.E., Owen, A., Brand-Correa, L.I., Hardt, L. Estimation of global final-stage energy-return-on-investment for fossil fuels with comparison to renewable energy sources (2019) Nature Energy, 4 (7), pp. 612-621. Cited 248 times. www.nature.com/nenergy/ doi: 10.1038/s41560-019-0425-zRuocco, C., Palma, V., Ricca, A. Kinetics of Oxidative Steam Reforming of Ethanol Over Bimetallic Catalysts Supported on CeO2–SiO2: A Comparative Study (Open Access) (2019) Topics in Catalysis, 62 (5-6), pp. 467-478. Cited 13 times. http://springerlink.metapress.com/content/101754/ doi: 10.1007/s11244-019-01173-2de Fátima Palhares, D.D., Vieira, L.G.M., Damasceno, J.J.R. Hydrogen production by a low-cost electrolyzer developed through the combination of alkaline water electrolysis and solar energy use (2018) International Journal of Hydrogen Energy, 43 (9), pp. 4265-4275. Cited 60 times. http://www.journals.elsevier.com/international-journal-of-hydrogen-energy/ doi: 10.1016/j.ijhydene.2018.01.051Hosseini, S.E., Wahid, M.A. Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development (2016) Renewable and Sustainable Energy Reviews, 57, pp. 850-866. Cited 1269 times. https://www.journals.elsevier.com/renewable-and-sustainable-energy-reviews doi: 10.1016/j.rser.2015.12.112Kang, K., Azargohar, R., Dalai, A.K., Wang, H. Hydrogen production from lignin, cellulose and waste biomass via supercritical water gasification: Catalyst activity and process optimization study (2016) Energy Conversion and Management, 117, pp. 528-537. Cited 106 times. doi: 10.1016/j.enconman.2016.03.008Salhi, B., Wudil, Y.S., Hossain, M.K., Al-Ahmed, A., Al-Sulaiman, F.A. Review of recent developments and persistent challenges in stability of perovskite solar cells (2018) Renewable and Sustainable Energy Reviews, 90, pp. 210-222. Cited 83 times. https://www.journals.elsevier.com/renewable-and-sustainable-energy-reviews doi: 10.1016/j.rser.2018.03.058Zhang, H., Su, S., Chen, X., Lin, G., Chen, J. Configuration design and performance optimum analysis of a solar-driven high temperature steam electrolysis system for hydrogen production (2013) International Journal of Hydrogen Energy, 38 (11), pp. 4298-4307. Cited 34 times. doi: 10.1016/j.ijhydene.2013.01.199Sivabalan, K., Hassan, S., Ya, H., Pasupuleti, J. A review on the characteristic of biomass and classification of bioenergy through direct combustion and gasification as an alternative power supply (2021) Journal of Physics: Conference Series, 1831 (1), art. no. 012033. Cited 25 times. http://iopscience.iop.org/journal/1742-6596 doi: 10.1088/1742-6596/1831/1/012033Kim, J., Jun, A., Gwon, O., Yoo, S., Liu, M., Shin, J., Lim, T.-H., (...), Kim, G. Hybrid-solid oxide electrolysis cell: A new strategy for efficient hydrogen production (2018) Nano Energy, 44, pp. 121-126. Cited 172 times. http://www.journals.elsevier.com/nano-energy/ doi: 10.1016/j.nanoen.2017.11.074Saleem, F., Harris, J., Zhang, K., Harvey, A. Non-thermal plasma as a promising route for the removal of tar from the product gas of biomass gasification – A critical review (2020) Chemical Engineering Journal, 382, art. no. 122761. Cited 82 times. www.elsevier.com/inca/publications/store/6/0/1/2/7/3/index.htt doi: 10.1016/j.cej.2019.122761Zhang, Y., Li, L., Xu, P., Liu, B., Shuai, Y., Li, B. Hydrogen production through biomass gasification in supercritical water: A review from exergy aspect (2019) International Journal of Hydrogen Energy, 44 (30), pp. 15727-15736. Cited 81 times. http://www.journals.elsevier.com/international-journal-of-hydrogen-energy/ doi: 10.1016/j.ijhydene.2019.01.151Almutairi, K., Hosseini Dehshiri, S.S., Hosseini Dehshiri, S.J., Mostafaeipour, A., Jahangiri, M., Techato, K. Technical, economic, carbon footprint assessment, and prioritizing stations for hydrogen production using wind energy: A case study (2021) Energy Strategy Reviews, 36, art. no. 100684. Cited 41 times. http://www.journals.elsevier.com/energy-strategy-reviews/ doi: 10.1016/j.esr.2021.100684Li, Z., Guo, P., Han, R., Sun, H. Current status and development trend of wind power generation-based hydrogen production technology (2019) Energy Exploration and Exploitation, 37 (1), pp. 5-25. Cited 33 times. http://eea.sagepub.com/ doi: 10.1177/0144598718787294Lin, R., Cheng, J., Murphy, J.D. Inhibition of thermochemical treatment on biological hydrogen and methane co-production from algae-derived glucose/glycine (2018) Energy Conversion and Management, 158, pp. 201-209. Cited 42 times. doi: 10.1016/j.enconman.2017.12.052Show, K.-Y., Yan, Y., Ling, M., Ye, G., Li, T., Lee, D.-J. Hydrogen production from algal biomass – Advances, challenges and prospects (2018) Bioresource Technology, 257, pp. 290-300. Cited 116 times. www.elsevier.com/locate/biortech doi: 10.1016/j.biortech.2018.02.105Alves, H.J., Bley Junior, C., Niklevicz, R.R., Frigo, E.P., Frigo, M.S., Coimbra-Araújo, C.H. Overview of hydrogen production technologies from biogas and the applications in fuel cells (Open Access) (2013) International Journal of Hydrogen Energy, 38 (13), pp. 5215-5225. Cited 300 times. doi: 10.1016/j.ijhydene.2013.02.057Escamilla, A., Sánchez, D., García-Rodríguez, L. Assessment of power-to-power renewable energy storage based on the smart integration of hydrogen and micro gas turbine technologies (2022) International Journal of Hydrogen Energy, 47 (40), pp. 17505-17525. Cited 22 times. http://www.journals.elsevier.com/international-journal-of-hydrogen-energy/ doi: 10.1016/j.ijhydene.2022.03.238Rivard, E., Trudeau, M., Zaghib, K. Hydrogen storage for mobility: A review (Open Access) (2019) Materials, 12 (12), art. no. 1973. Cited 316 times. https://res.mdpi.com/materials/materials-12-01884/article_deploy/materials-12-01973.pdf?filename=&attachment=1 doi: 10.3390/ma12121973Prabhukhot Prachi, R., Wagh Mahesh, M., Gangal Aneesh, C. A Review on Solid State Hydrogen Storage Material (2016) Adv. Energy Power, 4, pp. 11-22. Cited 82 times.Sakintuna, B., Lamari-Darkrim, F., Hirscher, M. Metal hydride materials for solid hydrogen storage: A review (2007) International Journal of Hydrogen Energy, 32 (9), pp. 1121-1140. Cited 2750 times. doi: 10.1016/j.ijhydene.2006.11.022Wang, H., Zhao, Y., Dong, X., Yang, J., Guo, H., Gong, M. Thermodynamic analysis of low-temperature and high-pressure (cryo-compressed) hydrogen storage processes cooled by mixed-refrigerants (2022) International Journal of Hydrogen Energy, 47 (67), pp. 28932-28944. Cited 5 times. http://www.journals.elsevier.com/international-journal-of-hydrogen-energy/ doi: 10.1016/j.ijhydene.2022.06.193Xu, Z., Zhao, N., Hillmansen, S., Roberts, C., Yan, Y. Techno-Economic Analysis of Hydrogen Storage Technologies for Railway Engineering: A Review (Open Access) (2022) Energies, 15 (17), art. no. 6467. Cited 3 times. http://www.mdpi.com/journal/energies/ doi: 10.3390/en15176467Sapre, S., Vyas, M., Pareek, K. Impact of refueling parameters on storage density of compressed hydrogen storage Tank (2021) International Journal of Hydrogen Energy, 46 (31), pp. 16685-16692. Cited 12 times. http://www.journals.elsevier.com/international-journal-of-hydrogen-energy/ doi: 10.1016/j.ijhydene.2020.08.136Jain, I.P., Lal, C., Jain, A. Hydrogen storage in Mg: A most promising material (Open Access) (2010) International Journal of Hydrogen Energy, 35 (10), pp. 5133-5144. Cited 908 times. doi: 10.1016/j.ijhydene.2009.08.088Yang, X., Bulushev, D.A., Yang, J., Zhang, Q. New Liquid Chemical Hydrogen Storage Technology (2022) Energies, 15 (17), art. no. 6360. Cited 8 times. http://www.mdpi.com/journal/energies/ doi: 10.3390/en15176360Toghyani, S., Afshari, E., Baniasadi, E., Atyabi, S.A. Thermal and electrochemical analysis of different flow field patterns in a PEM electrolyzer (Open Access) (2018) Electrochimica Acta, 267, pp. 234-245. Cited 62 times. http://www.journals.elsevier.com/electrochimica-acta/ doi: 10.1016/j.electacta.2018.02.078Koumi Ngoh, S., Njomo, D. An overview of hydrogen gas production from solar energy (2012) Renewable and Sustainable Energy Reviews, 16 (9), pp. 6782-6792. Cited 162 times. doi: 10.1016/j.rser.2012.07.027Jørgensen, C., Ropenus, S. Production price of hydrogen from grid connected electrolysis in a power market with high wind penetration. (2008) International Journal of Hydrogen Energy, 33 (20), pp. 5335-5344. Cited 88 times. doi: 10.1016/j.ijhydene.2008.06.037Yang, Y., De La Torre, B., Stewart, K., Lair, L., Phan, N.L., Das, R., Gonzalez, D., (...), Lo, R.C. The scheduling of alkaline water electrolysis for hydrogen production using hybrid energy sources (Open Access) (2022) Energy Conversion and Management, 257, art. no. 115408. Cited 11 times. https://www.journals.elsevier.com/energy-conversion-and-management doi: 10.1016/j.enconman.2022.115408Vidas, L., Castro, R. Recent developments on hydrogen production technologies: State-of-the-art review with a focus on green-electrolysis (Open Access) (2021) Applied Sciences (Switzerland), 11 (23), art. no. 11363. Cited 34 times. https://www.mdpi.com/2076-3417/11/23/11363/pdf doi: 10.3390/app112311363Speckmann, F.-W., Bintz, S., Birke, K.P. Influence of rectifiers on the energy demand and gas quality of alkaline electrolysis systems in dynamic operation (2019) Applied Energy, 250, pp. 855-863. Cited 34 times. https://www.journals.elsevier.com/applied-energy doi: 10.1016/j.apenergy.2019.05.014Nie, J., Chen, Y. Numerical modeling of three-dimensional two-phase gas-liquid flow in the flow field plate of a PEM electrolysis cell (Open Access) (2010) International Journal of Hydrogen Energy, 35 (8), pp. 3183-3197. Cited 87 times. doi: 10.1016/j.ijhydene.2010.01.050Lee, H.-S., Xin, W., Katakojwala, R., Venkata Mohan, S., Tabish, N.M.D. Microbial electrolysis cells for the production of biohydrogen in dark fermentation – A review (Open Access) (2022) Bioresource Technology, 363, art. no. 127934. Cited 11 times. www.elsevier.com/locate/biortech doi: 10.1016/j.biortech.2022.127934Cui, Q., Kuang, H.-B., Wu, C.-Y., Li, Y. The changing trend and influencing factors of energy efficiency: The case of nine countries (2014) Energy, 64, pp. 1026-1034. Cited 95 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2013.11.060Clinch, J.P., Healy, J.D., King, C. (2001) Modelling Improvements in Domestic Energy Efficiency Available online www.elsevier.com/locate/envsoftBlomberg, J., Henriksson, E., Lundmark, R. Energy efficiency and policy in Swedish pulp and paper mills: A data envelopment analysis approach (Open Access) (2012) Energy Policy, 42, pp. 569-579. Cited 74 times. doi: 10.1016/j.enpol.2011.12.026http://purl.org/coar/resource_type/c_6501CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12298/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12298/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53ORIGINALenergies-16-00087-v2 (1).pdfenergies-16-00087-v2 (1).pdfapplication/pdf7587530https://repositorio.utb.edu.co/bitstream/20.500.12585/12298/1/energies-16-00087-v2%20%281%29.pdfce86e82a1174c279878d3764f95e5dc8MD51TEXTenergies-16-00087-v2 (1).pdf.txtenergies-16-00087-v2 (1).pdf.txtExtracted texttext/plain93723https://repositorio.utb.edu.co/bitstream/20.500.12585/12298/4/energies-16-00087-v2%20%281%29.pdf.txtc23e1f00d233de3c9f62358581ee9a14MD54THUMBNAILenergies-16-00087-v2 (1).pdf.jpgenergies-16-00087-v2 (1).pdf.jpgGenerated Thumbnailimage/jpeg8038https://repositorio.utb.edu.co/bitstream/20.500.12585/12298/5/energies-16-00087-v2%20%281%29.pdf.jpg6b485a63ff6b33c3c6eadf11a4bdd0daMD5520.500.12585/12298oai:repositorio.utb.edu.co:20.500.12585/122982023-07-22 00:17:39.594Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=