Optimal Power Flow in Direct Current Networks Using the Antlion Optimizer
This document presents a solution method for optimal power flow (OPF) problem in direct current (DC) networks by implementing a master-slave optimization methodology that combines an antlion optimizer (ALO) and a power flow approach based on successive approximation (SA ). In the master stage, the A...
- Autores:
-
Garzón Rivera O.D.
Ocampo, J.A
Grisales-Noreña, Luis Fernando
Montoya, O.D
Rojas-Montano, J.J.
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/9998
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/9998
http://www.iapress.org/index.php/soic/article/view/1022
- Palabra clave:
- Antlion optimization
Direct current microgrids
Metaheuristic optimization methods
Optimal power flow analysis
Power flow
Successive approximation
LEMB
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_a64aa479dd1a468361d2a460fb01afe6 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/9998 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Optimal Power Flow in Direct Current Networks Using the Antlion Optimizer |
title |
Optimal Power Flow in Direct Current Networks Using the Antlion Optimizer |
spellingShingle |
Optimal Power Flow in Direct Current Networks Using the Antlion Optimizer Antlion optimization Direct current microgrids Metaheuristic optimization methods Optimal power flow analysis Power flow Successive approximation LEMB |
title_short |
Optimal Power Flow in Direct Current Networks Using the Antlion Optimizer |
title_full |
Optimal Power Flow in Direct Current Networks Using the Antlion Optimizer |
title_fullStr |
Optimal Power Flow in Direct Current Networks Using the Antlion Optimizer |
title_full_unstemmed |
Optimal Power Flow in Direct Current Networks Using the Antlion Optimizer |
title_sort |
Optimal Power Flow in Direct Current Networks Using the Antlion Optimizer |
dc.creator.fl_str_mv |
Garzón Rivera O.D. Ocampo, J.A Grisales-Noreña, Luis Fernando Montoya, O.D Rojas-Montano, J.J. |
dc.contributor.author.none.fl_str_mv |
Garzón Rivera O.D. Ocampo, J.A Grisales-Noreña, Luis Fernando Montoya, O.D Rojas-Montano, J.J. |
dc.subject.keywords.spa.fl_str_mv |
Antlion optimization Direct current microgrids Metaheuristic optimization methods Optimal power flow analysis Power flow Successive approximation |
topic |
Antlion optimization Direct current microgrids Metaheuristic optimization methods Optimal power flow analysis Power flow Successive approximation LEMB |
dc.subject.armarc.none.fl_str_mv |
LEMB |
description |
This document presents a solution method for optimal power flow (OPF) problem in direct current (DC) networks by implementing a master-slave optimization methodology that combines an antlion optimizer (ALO) and a power flow approach based on successive approximation (SA ). In the master stage, the ALO determines the optimal amount of power to be delivered by all the distributed generators (DGs) in order to minimize the total power losses in the distribution lines of the DC network. In slave stage, the power flow problem is solved considering constant power loads and power outputs of DGs as constants. To validate the effectiveness and robustness of the proposed model, two additional comparative methods were implemented: particle swarm optimization (PSO) and black hole optimization (BHO). Two distribution test feeders (21 and 69 nodes) were simulated under different scenarios of distributed power generation. The simulations, conducted in MATLAB 2018$b$, show that the proposed method (ALO) presents a better balance between power loss minimization and computational time required to find the optimal solution regardless of the size of the DC network. |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020-10-06 |
dc.date.accessioned.none.fl_str_mv |
2021-02-15T16:13:11Z |
dc.date.available.none.fl_str_mv |
2021-02-15T16:13:11Z |
dc.date.submitted.none.fl_str_mv |
2021-02-12 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasversion.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.citation.spa.fl_str_mv |
Garzon-Rivera, O., Ocampo, J., Grisales-Norena, L., Montoya, O., & Rojas-Montano, J. (2020). Optimal Power Flow in Direct Current Networks Using the Antlion Optimizer. Statistics, Optimization & Information Computing, 8(4), 846-857. https://doi.org/10.19139/soic-2310-5070-1022 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/9998 |
dc.identifier.url.none.fl_str_mv |
http://www.iapress.org/index.php/soic/article/view/1022 |
dc.identifier.doi.none.fl_str_mv |
10.19139/soic-2310-5070-1022 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Universidad Tecnológica de Bolívar |
identifier_str_mv |
Garzon-Rivera, O., Ocampo, J., Grisales-Norena, L., Montoya, O., & Rojas-Montano, J. (2020). Optimal Power Flow in Direct Current Networks Using the Antlion Optimizer. Statistics, Optimization & Information Computing, 8(4), 846-857. https://doi.org/10.19139/soic-2310-5070-1022 10.19139/soic-2310-5070-1022 Universidad Tecnológica de Bolívar Repositorio Universidad Tecnológica de Bolívar |
url |
https://hdl.handle.net/20.500.12585/9998 http://www.iapress.org/index.php/soic/article/view/1022 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.cc.*.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
12 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.place.spa.fl_str_mv |
Cartagena de Indias |
dc.source.spa.fl_str_mv |
Statistics, Optimization & Information Computing Vol 8 No 4 (2020) |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/9998/1/158.pdf https://repositorio.utb.edu.co/bitstream/20.500.12585/9998/3/license.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/9998/2/license_rdf https://repositorio.utb.edu.co/bitstream/20.500.12585/9998/4/158.pdf.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/9998/5/158.pdf.jpg |
bitstream.checksum.fl_str_mv |
ffe395942eae282825a862a4fbb543a9 e20ad307a1c5f3f25af9304a7a7c86b6 4460e5956bc1d1639be9ae6146a50347 9070b038269f0f7ed07b4970a402ff80 c0ebcfc09fcaf815e2e52b1c1231c9bf |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021679078178816 |
spelling |
Garzón Rivera O.D.7f839c44-6d86-4cd0-a102-b788eda85288Ocampo, J.Ab3256834-32a1-4b89-b646-e40b233189a4Grisales-Noreña, Luis Fernando98ba5e2d-fa38-40c5-a05c-d73772e8ab17Montoya, O.Dc350cd1a-09d0-4e77-8444-83ccfd0773e1Rojas-Montano, J.J.057d2dbe-412e-4ed2-9b0f-5c120939aa3a2021-02-15T16:13:11Z2021-02-15T16:13:11Z2020-10-062021-02-12Garzon-Rivera, O., Ocampo, J., Grisales-Norena, L., Montoya, O., & Rojas-Montano, J. (2020). Optimal Power Flow in Direct Current Networks Using the Antlion Optimizer. Statistics, Optimization & Information Computing, 8(4), 846-857. https://doi.org/10.19139/soic-2310-5070-1022https://hdl.handle.net/20.500.12585/9998http://www.iapress.org/index.php/soic/article/view/102210.19139/soic-2310-5070-1022Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThis document presents a solution method for optimal power flow (OPF) problem in direct current (DC) networks by implementing a master-slave optimization methodology that combines an antlion optimizer (ALO) and a power flow approach based on successive approximation (SA ). In the master stage, the ALO determines the optimal amount of power to be delivered by all the distributed generators (DGs) in order to minimize the total power losses in the distribution lines of the DC network. In slave stage, the power flow problem is solved considering constant power loads and power outputs of DGs as constants. To validate the effectiveness and robustness of the proposed model, two additional comparative methods were implemented: particle swarm optimization (PSO) and black hole optimization (BHO). Two distribution test feeders (21 and 69 nodes) were simulated under different scenarios of distributed power generation. The simulations, conducted in MATLAB 2018$b$, show that the proposed method (ALO) presents a better balance between power loss minimization and computational time required to find the optimal solution regardless of the size of the DC network.12 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Statistics, Optimization & Information Computing Vol 8 No 4 (2020)Optimal Power Flow in Direct Current Networks Using the Antlion Optimizerinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Antlion optimizationDirect current microgridsMetaheuristic optimization methodsOptimal power flow analysisPower flowSuccessive approximationLEMBCartagena de IndiasW. LI, Y. GU, H. YANG, W. SUN, Y. CHI and X. HE Hierarchical control of DC microgrids combining robustness and smartness. 2019 CSEE Journal of Power and Energy Systems, pp.1-10. ISSN 2096-0042. DOI:10.17775/CSEEJPES.2017.00920.MANRIQUE, MAR´IA LOURDES, MONTOYA, OSCAR DANILO, GARRIDO, V´ICTOR MANUEL, GRISALES-NORENA˜ LUIS FERNANDO and GIL-GONZALEZ ´ , WALTER Sine-Cosine Algorithm for OPF Analysis in Distribution Systems to Size Distributed Generators. Springer International Publishing. 2019, vol.119, pp.28–39. WEA 2019. DOI:10.1007/978-3-030-31019-63.Z. CHEN, K. WANG, Z. LI and T. ZHENG. A review on control strategies of AC/DC micro grid. 2017 IEEE International Conference on Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I CPS Europe), pp.1-6. DOI:10.1109/EEEIC.2017.7977807.OMAR ELLABBAN, HAITHAM ABU-RUB and FREDE BLAABJERG. Renewable energy resources: Current status, future prospects and their enabling technology. Renewable and Sustainable Energy Reviews. 2014, vol.39, pp. 748-764. ISSN 1364-0321. DOI:10.1016/j.rser.2014.07.113.W. INAM, J. A. BELK, K. TURITSYN and D. J. PERREAULT. Stability, control, and power flow in ad hoc DC microgrids. 2016 IEEE 17th Workshop on Control and Modeling for Power Electronics (COMPEL), pp.1-8. DOI:10.1109/COMPEL.2016.7556704.MONTOYA, O. D., W. GIL-GONZALEZ and . F. GRISALES-NORENA. Optimal Power Dispatch of DGs in DC Power Grids: a Hybrid Gauss-Seidel-Genetic-Algorithm Methodology for Solving the OPF Problem. WSEAS Transactions on Power Systems. 2018, vol. 13, no. 33, pp. 335–346.ISSN 2224-350X.GARCES, A. Uniqueness of the power flow solutions in low voltage direct current grids. Electric Power Systems Research. 2017, vol. 151, no. 1, pp. 149–153. ISSN 0378-7796. DOI: 10.1016/j.epsr.2017.05.031.GARCES, A. On Convergence of Newtons Method in Power Flow Study for DC Microgrids. IEEE Transactions on Power Systems. 2018, vol. 33, no. 5, pp. 5770–5777. ISSN 0885-8950. DOI:10.1109/TPWRS.2018.2820430.MONTOYA, O. D., L. F. GRISALES-NORENA, D. GONZALEZ-MONTOYA, C. RAMOSPAJA and A. GARCES. Linear power flow formulation for low-voltage DC power grids. Electric Power Systems Research. 2018, vol.163, pp. 375–381. ISSN 0378- 7796. DOI:10.1016/j.epsr.2018.07.003.O. D. MONTOYA AND V. M. GARRIDO AND W. GIL-GONZALEZ ´ and L. GRISALES-NORENA˜ . Power Flow Analysis in DC Grids: Two Alternative Numerical Methods. IEEE Transactions on Circuits and Systems II: Express Briefs. 2019, pp 1-1. ISSN 1549-7747. DOI: 10.1109/TCSII.2019.2891640.D. E. OLIVARES, A. MEHRIZI-SANI, A. H. ETEMADI, C. A. CANIZARES AND ˜ R. IRAVANI AND M. KAZERANI, A. H. HAJIMIRAGHA, O. GOMIS-BELLMUNT, M. SAEEDIFARD AND R. PALMA-BEHNKE AND G. A. JIMENEZ ´ -ESTEVEZ ´ and N. D. HATZIARGYRIOU. Trends in Microgrid Control. IEEE Transactions on Smart Grid. 2014, vol.5, no.4, pp 1905-1919. ISSN1949-3053. DOI: 10.1109/TSG.2013.2295514.LI, J., F. LIU, Z. WANG, S. LOW and S. MEI. Optimal Power Flow in Stand-alone DC Microgrids. IEEE Transactions on Power Systems. 2018, vol.33, no.5, pp.5496–5506. ISSN 0885-8950. DOI: 10.1109/TPWRS.2018.2801280.GIL-GONZALEZ, W., O. D. MONTOYA, E. HOLGUIN, A. GARCES and L. F. GRISALES-NORENA. Economic dispatch of energy storage systems in dc microgrids employing a semidefinite programming model. Journal of Energy Storage. 2019, vol.21, no.1, pp.1–8. ISSN 2352-152X. DOI: 10.1016/j.est.2018.10.025.MONTOYA, O. D., W. GIL-GONZALEZ and A. GARCES. Optimal Power Flow on DC Microgrids: A Quadratic Convex Approximation. IEEE Transactions on Circuits and Systems II: Express Briefs. 2018, vol. 99, no. 1, pp. 1–1. ISSN 1549-7747. DOI: 10.1109/TCSII.2018.2871432.VELASQUEZ, ORFILIO AND MONTOYA O.D,MANUEL GARRIDO AREVALO V, and GRISALES-NORENA˜ , LUIS. Optimal Power Flow in Direct-Current Power Grids via Black Hole Optimization. Advances in Electrical and Electronic Engineering. 2019, vol. 34, no. 1, pp. 66 - 74. ISSN 0142-0615. DOI: 10.1016/j.ijepes.2011.08.02.GRISALES-NORENA, L. F., D. G. MONTOYA and C. A. RAMOS-PAJA. Optimal Sizing and Location of Distributed Generators Based on PBIL and PSO Techniques. Energies. 2018, vol. 11, no. 1018, pp. 1–27. ISSN 1996-1073. DOI: 10.3390/en11041018.ALGULIYEV, RASIM M. AND ALIGULIYEV, RAMIZ M. AND ABDULLAYEVA, FARGANA J. PSO+K-means Algorithm for Anomaly Detection in Big Data. STATISTICS, OPTIMIZATION AND INFORMATION COMPUTING. 2019, vol. 7, no. 2, pp. 348-359. ISSN 2310-5070. DOI:10.19139/soic.v7i2.623.M.A RODRIGUEZ, L.F GRISALES, J.G ARDILA, O.D MONTOYA Optimal Design of Transmission Shafts: a Continuous Genetic Algorithm Approach. STATISTICS, OPTIMIZATION AND INFORMATION COMPUTING. 2019, vol. 7, pp. 802-815. ISSN 2310- 5070. DOI:10.19139/soic-2310-5070-641O KOSTYUKOVA, T TCHEMISOVA, M KURDINA On Optimal Properties of Special Nonlinear and Semi-infinite Problems Arising in Parametric Optimization . STATISTICS, OPTIMIZATION AND INFORMATION COMPUTING. 2017, vol. 5, pp. 99-108. ISSN 2310-5070. DOI:10.19139/soic.v5i2.303E.S. ALI, S.M. ABD ELAZIM and A.Y. ABDELAZIZ. Ant Lion Optimization Algorithm for Renewable Distributed Generations. Energy. 2016, vol. 116, pp. 445-458. ISSN 0360-5442. DOI:10.1016/j.energy.2016.09.104.YANG, XIN-SHE. Nature-Inspired Metaheuristic Algorithms. Advances in Engineering Software. 2010.ESEYEDALI MIRJALILI. The Ant Lion Optimizer. Advances in Engineering Software. 2015, vol.83, pp. 80 - 98. ISSN 0965-9978. DOI:10.1016/j.advengsoft.2015.01.010.MOHAMMAD JAFAR HADIDIAN-MOGHADDAM, SABER ARABI-NOWDEH, MEHDI BIGDELI and DAVOOD AZIZIAN. A multiobjective optimal sizing and siting of distributed generation using ant lion optimization technique. Ain Shams Engineering Journal. 2018, vol.9, no.14, pp.2101-2109. ISSN 2090-4479. DOI: 10.1016/j.asej.2017.03.001.http://purl.org/coar/resource_type/c_2df8fbb1ORIGINAL158.pdf158.pdfArtículo principalapplication/pdf333863https://repositorio.utb.edu.co/bitstream/20.500.12585/9998/1/158.pdfffe395942eae282825a862a4fbb543a9MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/9998/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/9998/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52TEXT158.pdf.txt158.pdf.txtExtracted texttext/plain38780https://repositorio.utb.edu.co/bitstream/20.500.12585/9998/4/158.pdf.txt9070b038269f0f7ed07b4970a402ff80MD54THUMBNAIL158.pdf.jpg158.pdf.jpgGenerated Thumbnailimage/jpeg81411https://repositorio.utb.edu.co/bitstream/20.500.12585/9998/5/158.pdf.jpgc0ebcfc09fcaf815e2e52b1c1231c9bfMD5520.500.12585/9998oai:repositorio.utb.edu.co:20.500.12585/99982023-05-26 11:13:47.846Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo= |