Optimal Power Flow in Direct Current Networks Using the Antlion Optimizer

This document presents a solution method for optimal power flow (OPF) problem in direct current (DC) networks by implementing a master-slave optimization methodology that combines an antlion optimizer (ALO) and a power flow approach based on successive approximation (SA ). In the master stage, the A...

Full description

Autores:
Garzón Rivera O.D.
Ocampo, J.A
Grisales-Noreña, Luis Fernando
Montoya, O.D
Rojas-Montano, J.J.
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/9998
Acceso en línea:
https://hdl.handle.net/20.500.12585/9998
http://www.iapress.org/index.php/soic/article/view/1022
Palabra clave:
Antlion optimization
Direct current microgrids
Metaheuristic optimization methods
Optimal power flow analysis
Power flow
Successive approximation
LEMB
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_a64aa479dd1a468361d2a460fb01afe6
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/9998
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Optimal Power Flow in Direct Current Networks Using the Antlion Optimizer
title Optimal Power Flow in Direct Current Networks Using the Antlion Optimizer
spellingShingle Optimal Power Flow in Direct Current Networks Using the Antlion Optimizer
Antlion optimization
Direct current microgrids
Metaheuristic optimization methods
Optimal power flow analysis
Power flow
Successive approximation
LEMB
title_short Optimal Power Flow in Direct Current Networks Using the Antlion Optimizer
title_full Optimal Power Flow in Direct Current Networks Using the Antlion Optimizer
title_fullStr Optimal Power Flow in Direct Current Networks Using the Antlion Optimizer
title_full_unstemmed Optimal Power Flow in Direct Current Networks Using the Antlion Optimizer
title_sort Optimal Power Flow in Direct Current Networks Using the Antlion Optimizer
dc.creator.fl_str_mv Garzón Rivera O.D.
Ocampo, J.A
Grisales-Noreña, Luis Fernando
Montoya, O.D
Rojas-Montano, J.J.
dc.contributor.author.none.fl_str_mv Garzón Rivera O.D.
Ocampo, J.A
Grisales-Noreña, Luis Fernando
Montoya, O.D
Rojas-Montano, J.J.
dc.subject.keywords.spa.fl_str_mv Antlion optimization
Direct current microgrids
Metaheuristic optimization methods
Optimal power flow analysis
Power flow
Successive approximation
topic Antlion optimization
Direct current microgrids
Metaheuristic optimization methods
Optimal power flow analysis
Power flow
Successive approximation
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description This document presents a solution method for optimal power flow (OPF) problem in direct current (DC) networks by implementing a master-slave optimization methodology that combines an antlion optimizer (ALO) and a power flow approach based on successive approximation (SA ). In the master stage, the ALO determines the optimal amount of power to be delivered by all the distributed generators (DGs) in order to minimize the total power losses in the distribution lines of the DC network. In slave stage, the power flow problem is solved considering constant power loads and power outputs of DGs as constants. To validate the effectiveness and robustness of the proposed model, two additional comparative methods were implemented: particle swarm optimization (PSO) and black hole optimization (BHO). Two distribution test feeders (21 and 69 nodes) were simulated under different scenarios of distributed power generation. The simulations, conducted in MATLAB 2018$b$, show that the proposed method (ALO) presents a better balance between power loss minimization and computational time required to find the optimal solution regardless of the size of the DC network.
publishDate 2020
dc.date.issued.none.fl_str_mv 2020-10-06
dc.date.accessioned.none.fl_str_mv 2021-02-15T16:13:11Z
dc.date.available.none.fl_str_mv 2021-02-15T16:13:11Z
dc.date.submitted.none.fl_str_mv 2021-02-12
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Garzon-Rivera, O., Ocampo, J., Grisales-Norena, L., Montoya, O., & Rojas-Montano, J. (2020). Optimal Power Flow in Direct Current Networks Using the Antlion Optimizer. Statistics, Optimization & Information Computing, 8(4), 846-857. https://doi.org/10.19139/soic-2310-5070-1022
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/9998
dc.identifier.url.none.fl_str_mv http://www.iapress.org/index.php/soic/article/view/1022
dc.identifier.doi.none.fl_str_mv 10.19139/soic-2310-5070-1022
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Garzon-Rivera, O., Ocampo, J., Grisales-Norena, L., Montoya, O., & Rojas-Montano, J. (2020). Optimal Power Flow in Direct Current Networks Using the Antlion Optimizer. Statistics, Optimization & Information Computing, 8(4), 846-857. https://doi.org/10.19139/soic-2310-5070-1022
10.19139/soic-2310-5070-1022
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/9998
http://www.iapress.org/index.php/soic/article/view/1022
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 12 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv Statistics, Optimization & Information Computing Vol 8 No 4 (2020)
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/9998/1/158.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/9998/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/9998/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/9998/4/158.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/9998/5/158.pdf.jpg
bitstream.checksum.fl_str_mv ffe395942eae282825a862a4fbb543a9
e20ad307a1c5f3f25af9304a7a7c86b6
4460e5956bc1d1639be9ae6146a50347
9070b038269f0f7ed07b4970a402ff80
c0ebcfc09fcaf815e2e52b1c1231c9bf
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021679078178816
spelling Garzón Rivera O.D.7f839c44-6d86-4cd0-a102-b788eda85288Ocampo, J.Ab3256834-32a1-4b89-b646-e40b233189a4Grisales-Noreña, Luis Fernando98ba5e2d-fa38-40c5-a05c-d73772e8ab17Montoya, O.Dc350cd1a-09d0-4e77-8444-83ccfd0773e1Rojas-Montano, J.J.057d2dbe-412e-4ed2-9b0f-5c120939aa3a2021-02-15T16:13:11Z2021-02-15T16:13:11Z2020-10-062021-02-12Garzon-Rivera, O., Ocampo, J., Grisales-Norena, L., Montoya, O., & Rojas-Montano, J. (2020). Optimal Power Flow in Direct Current Networks Using the Antlion Optimizer. Statistics, Optimization & Information Computing, 8(4), 846-857. https://doi.org/10.19139/soic-2310-5070-1022https://hdl.handle.net/20.500.12585/9998http://www.iapress.org/index.php/soic/article/view/102210.19139/soic-2310-5070-1022Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThis document presents a solution method for optimal power flow (OPF) problem in direct current (DC) networks by implementing a master-slave optimization methodology that combines an antlion optimizer (ALO) and a power flow approach based on successive approximation (SA ). In the master stage, the ALO determines the optimal amount of power to be delivered by all the distributed generators (DGs) in order to minimize the total power losses in the distribution lines of the DC network. In slave stage, the power flow problem is solved considering constant power loads and power outputs of DGs as constants. To validate the effectiveness and robustness of the proposed model, two additional comparative methods were implemented: particle swarm optimization (PSO) and black hole optimization (BHO). Two distribution test feeders (21 and 69 nodes) were simulated under different scenarios of distributed power generation. The simulations, conducted in MATLAB 2018$b$, show that the proposed method (ALO) presents a better balance between power loss minimization and computational time required to find the optimal solution regardless of the size of the DC network.12 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Statistics, Optimization & Information Computing Vol 8 No 4 (2020)Optimal Power Flow in Direct Current Networks Using the Antlion Optimizerinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Antlion optimizationDirect current microgridsMetaheuristic optimization methodsOptimal power flow analysisPower flowSuccessive approximationLEMBCartagena de IndiasW. LI, Y. GU, H. YANG, W. SUN, Y. CHI and X. HE Hierarchical control of DC microgrids combining robustness and smartness. 2019 CSEE Journal of Power and Energy Systems, pp.1-10. ISSN 2096-0042. DOI:10.17775/CSEEJPES.2017.00920.MANRIQUE, MAR´IA LOURDES, MONTOYA, OSCAR DANILO, GARRIDO, V´ICTOR MANUEL, GRISALES-NORENA˜ LUIS FERNANDO and GIL-GONZALEZ ´ , WALTER Sine-Cosine Algorithm for OPF Analysis in Distribution Systems to Size Distributed Generators. Springer International Publishing. 2019, vol.119, pp.28–39. WEA 2019. DOI:10.1007/978-3-030-31019-63.Z. CHEN, K. WANG, Z. LI and T. ZHENG. A review on control strategies of AC/DC micro grid. 2017 IEEE International Conference on Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I CPS Europe), pp.1-6. DOI:10.1109/EEEIC.2017.7977807.OMAR ELLABBAN, HAITHAM ABU-RUB and FREDE BLAABJERG. Renewable energy resources: Current status, future prospects and their enabling technology. Renewable and Sustainable Energy Reviews. 2014, vol.39, pp. 748-764. ISSN 1364-0321. DOI:10.1016/j.rser.2014.07.113.W. INAM, J. A. BELK, K. TURITSYN and D. J. PERREAULT. Stability, control, and power flow in ad hoc DC microgrids. 2016 IEEE 17th Workshop on Control and Modeling for Power Electronics (COMPEL), pp.1-8. DOI:10.1109/COMPEL.2016.7556704.MONTOYA, O. D., W. GIL-GONZALEZ and . F. GRISALES-NORENA. Optimal Power Dispatch of DGs in DC Power Grids: a Hybrid Gauss-Seidel-Genetic-Algorithm Methodology for Solving the OPF Problem. WSEAS Transactions on Power Systems. 2018, vol. 13, no. 33, pp. 335–346.ISSN 2224-350X.GARCES, A. Uniqueness of the power flow solutions in low voltage direct current grids. Electric Power Systems Research. 2017, vol. 151, no. 1, pp. 149–153. ISSN 0378-7796. DOI: 10.1016/j.epsr.2017.05.031.GARCES, A. On Convergence of Newtons Method in Power Flow Study for DC Microgrids. IEEE Transactions on Power Systems. 2018, vol. 33, no. 5, pp. 5770–5777. ISSN 0885-8950. DOI:10.1109/TPWRS.2018.2820430.MONTOYA, O. D., L. F. GRISALES-NORENA, D. GONZALEZ-MONTOYA, C. RAMOSPAJA and A. GARCES. Linear power flow formulation for low-voltage DC power grids. Electric Power Systems Research. 2018, vol.163, pp. 375–381. ISSN 0378- 7796. DOI:10.1016/j.epsr.2018.07.003.O. D. MONTOYA AND V. M. GARRIDO AND W. GIL-GONZALEZ ´ and L. GRISALES-NORENA˜ . Power Flow Analysis in DC Grids: Two Alternative Numerical Methods. IEEE Transactions on Circuits and Systems II: Express Briefs. 2019, pp 1-1. ISSN 1549-7747. DOI: 10.1109/TCSII.2019.2891640.D. E. OLIVARES, A. MEHRIZI-SANI, A. H. ETEMADI, C. A. CANIZARES AND ˜ R. IRAVANI AND M. KAZERANI, A. H. HAJIMIRAGHA, O. GOMIS-BELLMUNT, M. SAEEDIFARD AND R. PALMA-BEHNKE AND G. A. JIMENEZ ´ -ESTEVEZ ´ and N. D. HATZIARGYRIOU. Trends in Microgrid Control. IEEE Transactions on Smart Grid. 2014, vol.5, no.4, pp 1905-1919. ISSN1949-3053. DOI: 10.1109/TSG.2013.2295514.LI, J., F. LIU, Z. WANG, S. LOW and S. MEI. Optimal Power Flow in Stand-alone DC Microgrids. IEEE Transactions on Power Systems. 2018, vol.33, no.5, pp.5496–5506. ISSN 0885-8950. DOI: 10.1109/TPWRS.2018.2801280.GIL-GONZALEZ, W., O. D. MONTOYA, E. HOLGUIN, A. GARCES and L. F. GRISALES-NORENA. Economic dispatch of energy storage systems in dc microgrids employing a semidefinite programming model. Journal of Energy Storage. 2019, vol.21, no.1, pp.1–8. ISSN 2352-152X. DOI: 10.1016/j.est.2018.10.025.MONTOYA, O. D., W. GIL-GONZALEZ and A. GARCES. Optimal Power Flow on DC Microgrids: A Quadratic Convex Approximation. IEEE Transactions on Circuits and Systems II: Express Briefs. 2018, vol. 99, no. 1, pp. 1–1. ISSN 1549-7747. DOI: 10.1109/TCSII.2018.2871432.VELASQUEZ, ORFILIO AND MONTOYA O.D,MANUEL GARRIDO AREVALO V, and GRISALES-NORENA˜ , LUIS. Optimal Power Flow in Direct-Current Power Grids via Black Hole Optimization. Advances in Electrical and Electronic Engineering. 2019, vol. 34, no. 1, pp. 66 - 74. ISSN 0142-0615. DOI: 10.1016/j.ijepes.2011.08.02.GRISALES-NORENA, L. F., D. G. MONTOYA and C. A. RAMOS-PAJA. Optimal Sizing and Location of Distributed Generators Based on PBIL and PSO Techniques. Energies. 2018, vol. 11, no. 1018, pp. 1–27. ISSN 1996-1073. DOI: 10.3390/en11041018.ALGULIYEV, RASIM M. AND ALIGULIYEV, RAMIZ M. AND ABDULLAYEVA, FARGANA J. PSO+K-means Algorithm for Anomaly Detection in Big Data. STATISTICS, OPTIMIZATION AND INFORMATION COMPUTING. 2019, vol. 7, no. 2, pp. 348-359. ISSN 2310-5070. DOI:10.19139/soic.v7i2.623.M.A RODRIGUEZ, L.F GRISALES, J.G ARDILA, O.D MONTOYA Optimal Design of Transmission Shafts: a Continuous Genetic Algorithm Approach. STATISTICS, OPTIMIZATION AND INFORMATION COMPUTING. 2019, vol. 7, pp. 802-815. ISSN 2310- 5070. DOI:10.19139/soic-2310-5070-641O KOSTYUKOVA, T TCHEMISOVA, M KURDINA On Optimal Properties of Special Nonlinear and Semi-infinite Problems Arising in Parametric Optimization . STATISTICS, OPTIMIZATION AND INFORMATION COMPUTING. 2017, vol. 5, pp. 99-108. ISSN 2310-5070. DOI:10.19139/soic.v5i2.303E.S. ALI, S.M. ABD ELAZIM and A.Y. ABDELAZIZ. Ant Lion Optimization Algorithm for Renewable Distributed Generations. Energy. 2016, vol. 116, pp. 445-458. ISSN 0360-5442. DOI:10.1016/j.energy.2016.09.104.YANG, XIN-SHE. Nature-Inspired Metaheuristic Algorithms. Advances in Engineering Software. 2010.ESEYEDALI MIRJALILI. The Ant Lion Optimizer. Advances in Engineering Software. 2015, vol.83, pp. 80 - 98. ISSN 0965-9978. DOI:10.1016/j.advengsoft.2015.01.010.MOHAMMAD JAFAR HADIDIAN-MOGHADDAM, SABER ARABI-NOWDEH, MEHDI BIGDELI and DAVOOD AZIZIAN. A multiobjective optimal sizing and siting of distributed generation using ant lion optimization technique. Ain Shams Engineering Journal. 2018, vol.9, no.14, pp.2101-2109. ISSN 2090-4479. DOI: 10.1016/j.asej.2017.03.001.http://purl.org/coar/resource_type/c_2df8fbb1ORIGINAL158.pdf158.pdfArtículo principalapplication/pdf333863https://repositorio.utb.edu.co/bitstream/20.500.12585/9998/1/158.pdfffe395942eae282825a862a4fbb543a9MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/9998/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/9998/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52TEXT158.pdf.txt158.pdf.txtExtracted texttext/plain38780https://repositorio.utb.edu.co/bitstream/20.500.12585/9998/4/158.pdf.txt9070b038269f0f7ed07b4970a402ff80MD54THUMBNAIL158.pdf.jpg158.pdf.jpgGenerated Thumbnailimage/jpeg81411https://repositorio.utb.edu.co/bitstream/20.500.12585/9998/5/158.pdf.jpgc0ebcfc09fcaf815e2e52b1c1231c9bfMD5520.500.12585/9998oai:repositorio.utb.edu.co:20.500.12585/99982023-05-26 11:13:47.846Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=