A Comparative Study of Signal Analysis Methods Applied in the Detection of Instantaneous Frequency

The smart grid concept is being applied more and more frequently and this is due to the need to integrate all the components that are part of power systems today, starting from generation units, storage systems, communications and connected loads. Non-linear and non-stationary signals have been obta...

Full description

Autores:
Bueno Lopez, Maximiliano
Sanabria Villamizar, Mauricio
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/9935
Acceso en línea:
https://hdl.handle.net/20.500.12585/9935
https://doi.org/10.32397/tesea.vol1.n1.1
Palabra clave:
Power Quality
Empirical Mode Decomposition
Instantaneous Frequency
Hilbert-Huang Transform
Wavelet Transform
LEMB
Rights
openAccess
License
http://creativecommons.org/licenses/by/4.0/
id UTB2_a61dddf614b03b5aff78e415a7ec1988
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/9935
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv A Comparative Study of Signal Analysis Methods Applied in the Detection of Instantaneous Frequency
title A Comparative Study of Signal Analysis Methods Applied in the Detection of Instantaneous Frequency
spellingShingle A Comparative Study of Signal Analysis Methods Applied in the Detection of Instantaneous Frequency
Power Quality
Empirical Mode Decomposition
Instantaneous Frequency
Hilbert-Huang Transform
Wavelet Transform
LEMB
title_short A Comparative Study of Signal Analysis Methods Applied in the Detection of Instantaneous Frequency
title_full A Comparative Study of Signal Analysis Methods Applied in the Detection of Instantaneous Frequency
title_fullStr A Comparative Study of Signal Analysis Methods Applied in the Detection of Instantaneous Frequency
title_full_unstemmed A Comparative Study of Signal Analysis Methods Applied in the Detection of Instantaneous Frequency
title_sort A Comparative Study of Signal Analysis Methods Applied in the Detection of Instantaneous Frequency
dc.creator.fl_str_mv Bueno Lopez, Maximiliano
Sanabria Villamizar, Mauricio
dc.contributor.author.none.fl_str_mv Bueno Lopez, Maximiliano
Sanabria Villamizar, Mauricio
dc.subject.keywords.spa.fl_str_mv Power Quality
Empirical Mode Decomposition
Instantaneous Frequency
Hilbert-Huang Transform
Wavelet Transform
topic Power Quality
Empirical Mode Decomposition
Instantaneous Frequency
Hilbert-Huang Transform
Wavelet Transform
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description The smart grid concept is being applied more and more frequently and this is due to the need to integrate all the components that are part of power systems today, starting from generation units, storage systems, communications and connected loads. Non-linear and non-stationary signals have been obtained in this type of systems, which have high penetration of non-conventional energy sources (NCSRE) and non-linear loads. The power quality criterion has had to be adapted to the new conditions of the electrical systems and this has led to the need to search for new analysis methodologies for the acquired signals. In this article we present a review on non-linear and non-stationary signal analysis methods in electrical systems with high NCSRE penetration. To this end we explore the application of the Hilbert-Huang Transform (HHT), Wavelet Transform (WT) and Wigner-Ville Distribution (WVD), exposing each of the advantages and disadvantages of these methods. To validate the methodology, we have selected some synthetic signals that adequately describe the typical behaviors in these systems.
publishDate 2020
dc.date.issued.none.fl_str_mv 2020-12-16
dc.date.accessioned.none.fl_str_mv 2021-02-08T13:56:19Z
dc.date.available.none.fl_str_mv 2021-02-08T13:56:19Z
dc.date.submitted.none.fl_str_mv 2021-02-05
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasVersion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Bueno-López, M., & Sanabria Villamizar, J. (2020). A Comparative Study of Signal Analysis Methods Applied in the Detection of Instantaneous Frequency. Transactions on Energy Systems and Engineering Applications, 1(1), 1-11. https://doi.org/10.32397/tesea.vol1.n1.1
dc.identifier.issn.none.fl_str_mv 2745-0120
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/9935
dc.identifier.doi.none.fl_str_mv https://doi.org/10.32397/tesea.vol1.n1.1
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Bueno-López, M., & Sanabria Villamizar, J. (2020). A Comparative Study of Signal Analysis Methods Applied in the Detection of Instantaneous Frequency. Transactions on Energy Systems and Engineering Applications, 1(1), 1-11. https://doi.org/10.32397/tesea.vol1.n1.1
2745-0120
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/9935
https://doi.org/10.32397/tesea.vol1.n1.1
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessRights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Atribución 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
Atribución 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 11 páginas
dc.format.medium.none.fl_str_mv Electrónico
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.publisher.sede.spa.fl_str_mv Campus Tecnológico
dc.publisher.discipline.spa.fl_str_mv Ingeniería Eléctrica
dc.source.spa.fl_str_mv Transactions on Energy Systems and Engineering Applications
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/9935/1/A%20Comparative%20Study%20of%20Signal%20Analysis%20MethodsApplied%20in%20the%20Detection%20of%20Instantaneous%20Frequenc.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/9935/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/9935/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/9935/4/A%20Comparative%20Study%20of%20Signal%20Analysis%20MethodsApplied%20in%20the%20Detection%20of%20Instantaneous%20Frequenc.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/9935/5/A%20Comparative%20Study%20of%20Signal%20Analysis%20MethodsApplied%20in%20the%20Detection%20of%20Instantaneous%20Frequenc.pdf.jpg
bitstream.checksum.fl_str_mv 9c63a4f273b3f5398105c0a32c4dc6df
0175ea4a2d4caec4bbcc37e300941108
e20ad307a1c5f3f25af9304a7a7c86b6
1fa1dfd6d87d0cd6059b40d7ed9a4ec8
fa81c659137478e240f25864b918c1b6
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021633983119360
spelling Bueno Lopez, Maximilianob710abd6-b774-4503-81aa-0ea7cbf94eb6600Sanabria Villamizar, Mauricioe5194d57-b833-4367-ad08-dd0510012a2b6002021-02-08T13:56:19Z2021-02-08T13:56:19Z2020-12-162021-02-05Bueno-López, M., & Sanabria Villamizar, J. (2020). A Comparative Study of Signal Analysis Methods Applied in the Detection of Instantaneous Frequency. Transactions on Energy Systems and Engineering Applications, 1(1), 1-11. https://doi.org/10.32397/tesea.vol1.n1.12745-0120https://hdl.handle.net/20.500.12585/9935https://doi.org/10.32397/tesea.vol1.n1.1Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThe smart grid concept is being applied more and more frequently and this is due to the need to integrate all the components that are part of power systems today, starting from generation units, storage systems, communications and connected loads. Non-linear and non-stationary signals have been obtained in this type of systems, which have high penetration of non-conventional energy sources (NCSRE) and non-linear loads. The power quality criterion has had to be adapted to the new conditions of the electrical systems and this has led to the need to search for new analysis methodologies for the acquired signals. In this article we present a review on non-linear and non-stationary signal analysis methods in electrical systems with high NCSRE penetration. To this end we explore the application of the Hilbert-Huang Transform (HHT), Wavelet Transform (WT) and Wigner-Ville Distribution (WVD), exposing each of the advantages and disadvantages of these methods. To validate the methodology, we have selected some synthetic signals that adequately describe the typical behaviors in these systems.11 páginasElectrónicoapplication/pdfenghttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessAtribución 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Transactions on Energy Systems and Engineering ApplicationsA Comparative Study of Signal Analysis Methods Applied in the Detection of Instantaneous Frequencyinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Power QualityEmpirical Mode DecompositionInstantaneous FrequencyHilbert-Huang TransformWavelet TransformLEMBCartagena de IndiasCampus TecnológicoIngeniería EléctricaPúblico general(2009). IEEE recommended practice for monitoring electric power quality.IEEE Std 1159-2009 (Revision of IEEE Std1159-1995), pages c1–81. doi:10.1109/IEEESTD.2009.5154067.Afroni, M. J., Sutanto, D., and Stirling, D. (2013). Analysis of nonstationary power-quality waveforms using iterativehilbert huang transform and sax algorithm.IEEE Transactions on Power Delivery, 28(4):2134–2144.Alshahrani, S., Abbod, M., and Taylor, G. (2016). Detection and classification of power quality disturbances based onhilbert-huang transform and feed forward neural networks. In 2016 51st International Universities Power EngineeringConference (UPEC), pages 1–6. IEEE.Anzalchi, A., Sundararajan, A., Moghadasi, A., and Sarwat, A. (2019). High-penetration grid-tied photovoltaics:Analysis of power quality and feeder voltage profile. IEEE Industry Applications Magazine, 25(5):83–94.doi:10.1109/MIAS.2019.2923104.Bíscaro, A., Pereira, R., Kezunovic, M., and Mantovani, J. (2015). Integrated fault location and power-qualityanalysis in electric power distribution systems.IEEE Transactions on power delivery, 31(2):428–436.Bueno-Lopez, M., Molinas, M., and Kulia, G. (2017).Understanding instantaneous frequency detection: Adiscussion of Hilbert-Huang Transform versus Wavelet Transform. In International Work-Conference on Time SeriesAnalysis-ITISE, volume 1, pages 474–486, Granada, Spain. University of Granada.Deering, R. and Kaiser, J. F. (2005). The use of a masking signal to improve empirical mode decomposition. InProceedings.(ICASSP’05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005., volume 4,pages iv–485. IEEE.Drummond, C. F. and Sutanto, D. (2010). Classification of power quality disturbances using the iterative hilberthuang transform. In Proceedings of 14th International Conference on Harmonics and Quality of Power - ICHQP 2010,pages 1–7. doi:10.1109/ICHQP.2010.5625326.Fan, Z. and Liu, X. (2012). A novel universal grid voltage sag detection algorithm. In2012 Power Engineering andAutomation Conference, pages 1–4. IEEE.Gasca, M. V., Bueno-Lopez, M., Molinas, M., and Fosso, O. B. (2018). Time-frequency analysis for nonlinearand non-stationary signals using hht: A mode mixing separation technique. IEEE Latin America Transactions,16(4):1091–1098. doi:10.1109/TLA.2018.8362142.Golpîra, H. and Messina, A. R. (2018). A center-of-gravity-based approach to estimate slow power and frequencyvariations.IEEE Transactions on Power Systems, 33(1):1026–1035. doi:10.1109/TPWRS.2017.2710187. Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen, N.-C., Tung, C. C., and Liu, H. H. (1998).The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis.Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 454(1971):903–995.Kavitha, V. and Subramanian, K. (2017). Investigation of power quality issues and its solution for distributedpower system. In 2017 International Conference on Circuit ,Power and Computing Technologies (ICCPCT), pages 1–6.doi:10.1109/ICCPCT.2017.8074372.Kornatka, M. (2017). Distribution of saidi and saifi indices and the saturation of the mv network with remotelycontrolled switches. In 2017 18th International Scientific Conference on Electric Power Engineering (EPE), pages 1–4.doi:10.1109/EPE.2017.7967243.Kumar, D. and Zare, F. (2016).Harmonic analysis of grid connected power electronic systems in lowvoltage distribution networks.IEEE Journal of Emerging and Selected Topics in Power Electronics, 4(1):70–79.doi:10.1109/JESTPE.2015.2454537.Leonowicz, Z. (2000). Analysis of non-stationary signals in power systems using wigner transform and min-normmethod. In 7th EEEIC Conference on Environment and Electrical Engineering, pages 43–46.Liu, Z., Cui, Y., and Li, W. (2015). A classification method for complex power quality disturbances using eemd andrank wavelet svm.IEEE Transactions on Smart Grid, 6(4):1678–1685. doi:10.1109/TSG.2015.2397431.Mallat, S. G. (1989). A theory for multiresolution signal decomposition: the wavelet representation.IEEE Transactionson Pattern Analysis & Machine Intelligence, (7):674–693.Naderi, Y., Hosseini, S. H., Ghassemzadeh, S., Mohammadi-Ivatloo, B., Savaghebi, M., Vasquez, J. C., and Guerrero,J. M. (2020). Chapter 4 - Power quality issues of smart microgrids: applied techniques and decision making analysis. In Aleem, S. H. A., Abdelaziz, A. Y., Zobaa, A. F., and Bansal, R., editors,Decision Making Applications in ModernPower Systems, pages 89 – 119. Academic Press. doi:https://doi.org/10.1016/B978-0-12-816445-7.00004-9.O’Toole, J. M., Mesbah, M., and Boashash, B. (2008). A new discrete analytic signal for reducing aliasing in thediscrete wigner-ville distribution.IEEE Transactions on Signal Processing, 56(11):5427–5434.Puliafito, V., Vergura, S., and Carpentieri, M. (2017). Fourier, wavelet, and hilbert-huang transforms for studyingelectrical users in the time and frequency domain.Energies, 10(2). doi:10.3390/en10020188.Sahani, M. and Dash, P. (2019). Fpga-based online power quality disturbances monitoring using reduced-samplehht and class-specific weighted rvfln.IEEE Transactions on Industrial Informatics.Sahani, M. and Dash, P. K. (2018). Automatic power quality events recognition based on hilbert huang transformand weighted bidirectional extreme learning machine.IEEE Transactions on Industrial Informatics, 14(9):3849–3858.Sanabria-Villamizar, M., Bueno-López, M., Molinas, M., and Bernal, E. (2019). Hybrid technique for the analysis ofnon-linear and non-stationary signals focused on power quality. In2019 FISE-IEEE/CIGRE Conference-Living theenergy Transition (FISE/CIGRE), pages 1–6. IEEE.Senroy, N., Suryanarayanan, S., and Ribeiro, P. F. (2007).An improved hilbert–huang method foranalysis of time-varying waveforms in power quality.IEEE Transactions on Power Systems, 22(4):1843–1850.doi:10.1109/TPWRS.2007.907542.http://purl.org/coar/resource_type/c_2df8fbb1ORIGINALA Comparative Study of Signal Analysis MethodsApplied in the Detection of Instantaneous Frequenc.pdfA Comparative Study of Signal Analysis MethodsApplied in the Detection of Instantaneous Frequenc.pdfapplication/pdf667711https://repositorio.utb.edu.co/bitstream/20.500.12585/9935/1/A%20Comparative%20Study%20of%20Signal%20Analysis%20MethodsApplied%20in%20the%20Detection%20of%20Instantaneous%20Frequenc.pdf9c63a4f273b3f5398105c0a32c4dc6dfMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8908https://repositorio.utb.edu.co/bitstream/20.500.12585/9935/2/license_rdf0175ea4a2d4caec4bbcc37e300941108MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/9935/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTA Comparative Study of Signal Analysis MethodsApplied in the Detection of Instantaneous Frequenc.pdf.txtA Comparative Study of Signal Analysis MethodsApplied in the Detection of Instantaneous Frequenc.pdf.txtExtracted texttext/plain29626https://repositorio.utb.edu.co/bitstream/20.500.12585/9935/4/A%20Comparative%20Study%20of%20Signal%20Analysis%20MethodsApplied%20in%20the%20Detection%20of%20Instantaneous%20Frequenc.pdf.txt1fa1dfd6d87d0cd6059b40d7ed9a4ec8MD54THUMBNAILA Comparative Study of Signal Analysis MethodsApplied in the Detection of Instantaneous Frequenc.pdf.jpgA Comparative Study of Signal Analysis MethodsApplied in the Detection of Instantaneous Frequenc.pdf.jpgGenerated Thumbnailimage/jpeg87157https://repositorio.utb.edu.co/bitstream/20.500.12585/9935/5/A%20Comparative%20Study%20of%20Signal%20Analysis%20MethodsApplied%20in%20the%20Detection%20of%20Instantaneous%20Frequenc.pdf.jpgfa81c659137478e240f25864b918c1b6MD5520.500.12585/9935oai:repositorio.utb.edu.co:20.500.12585/99352021-02-15 12:46:02.781Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=