Volatile organic compounds in the atmosphere of Mexico City
The Mexico City Metropolitan Area (MCMA) is one of the most polluted megacities in North America. Therefore, it is an excellent benchmark city to understand atmospheric chemistry and to implement pilot countermeasures. Air quality in the MCMA is not within acceptable levels, mainly due to high groun...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2015
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/8752
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/8752
- Palabra clave:
- Ozone
Ozone formation potential
Toxic volatile organic compound
Volatile organic compound
Acetone
Air quality
Atmospheric chemistry
Benzene
Cost effectiveness
Gas chromatography
Industrial emissions
Ionization of gases
Liquefied petroleum gas
Nitrogen oxides
Organic compounds
Ozone
Toluene
Troposphere
Average concentration
Correlation analysis
Emission sources
Environmental Authority
Industrial sources
Mexico City metropolitan areas
Ozone formation potentials
Vehicular emission
Volatile organic compounds
1,3 butadiene
1,4 dichlorobenzene
Acetone
Alcohol
Benzene
Ethylbenzene
Gasoline
Methyl chloride
Ozone
Petroleum derivative
Propane
Styrene
Toluene
Volatile organic compound
Xylene
Air quality
Atmospheric chemistry
Benchmarking
Benzene
Concentration (composition)
Correlation
Cost-benefit analysis
Health risk
Liquefied petroleum gas
Metropolitan area
Nitrogen oxides
Ozone
Public health
Toluene
Toxic substance
Troposphere
Volatile organic compound
Article
Atmosphere
City
Controlled study
Correlation analysis
Human
Mexican
Mexico
Motor vehicle
Priority journal
Federal District [Mexico]
Mexico City
Mexico [North America]
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_a5f1ce675662af2eddc4dfc0e6e94a90 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/8752 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
Volatile organic compounds in the atmosphere of Mexico City |
title |
Volatile organic compounds in the atmosphere of Mexico City |
spellingShingle |
Volatile organic compounds in the atmosphere of Mexico City Ozone Ozone formation potential Toxic volatile organic compound Volatile organic compound Acetone Air quality Atmospheric chemistry Benzene Cost effectiveness Gas chromatography Industrial emissions Ionization of gases Liquefied petroleum gas Nitrogen oxides Organic compounds Ozone Toluene Troposphere Average concentration Correlation analysis Emission sources Environmental Authority Industrial sources Mexico City metropolitan areas Ozone formation potentials Vehicular emission Volatile organic compounds 1,3 butadiene 1,4 dichlorobenzene Acetone Alcohol Benzene Ethylbenzene Gasoline Methyl chloride Ozone Petroleum derivative Propane Styrene Toluene Volatile organic compound Xylene Air quality Atmospheric chemistry Benchmarking Benzene Concentration (composition) Correlation Cost-benefit analysis Health risk Liquefied petroleum gas Metropolitan area Nitrogen oxides Ozone Public health Toluene Toxic substance Troposphere Volatile organic compound Article Atmosphere City Controlled study Correlation analysis Human Mexican Mexico Motor vehicle Priority journal Federal District [Mexico] Mexico City Mexico [North America] |
title_short |
Volatile organic compounds in the atmosphere of Mexico City |
title_full |
Volatile organic compounds in the atmosphere of Mexico City |
title_fullStr |
Volatile organic compounds in the atmosphere of Mexico City |
title_full_unstemmed |
Volatile organic compounds in the atmosphere of Mexico City |
title_sort |
Volatile organic compounds in the atmosphere of Mexico City |
dc.subject.keywords.none.fl_str_mv |
Ozone Ozone formation potential Toxic volatile organic compound Volatile organic compound Acetone Air quality Atmospheric chemistry Benzene Cost effectiveness Gas chromatography Industrial emissions Ionization of gases Liquefied petroleum gas Nitrogen oxides Organic compounds Ozone Toluene Troposphere Average concentration Correlation analysis Emission sources Environmental Authority Industrial sources Mexico City metropolitan areas Ozone formation potentials Vehicular emission Volatile organic compounds 1,3 butadiene 1,4 dichlorobenzene Acetone Alcohol Benzene Ethylbenzene Gasoline Methyl chloride Ozone Petroleum derivative Propane Styrene Toluene Volatile organic compound Xylene Air quality Atmospheric chemistry Benchmarking Benzene Concentration (composition) Correlation Cost-benefit analysis Health risk Liquefied petroleum gas Metropolitan area Nitrogen oxides Ozone Public health Toluene Toxic substance Troposphere Volatile organic compound Article Atmosphere City Controlled study Correlation analysis Human Mexican Mexico Motor vehicle Priority journal Federal District [Mexico] Mexico City Mexico [North America] |
topic |
Ozone Ozone formation potential Toxic volatile organic compound Volatile organic compound Acetone Air quality Atmospheric chemistry Benzene Cost effectiveness Gas chromatography Industrial emissions Ionization of gases Liquefied petroleum gas Nitrogen oxides Organic compounds Ozone Toluene Troposphere Average concentration Correlation analysis Emission sources Environmental Authority Industrial sources Mexico City metropolitan areas Ozone formation potentials Vehicular emission Volatile organic compounds 1,3 butadiene 1,4 dichlorobenzene Acetone Alcohol Benzene Ethylbenzene Gasoline Methyl chloride Ozone Petroleum derivative Propane Styrene Toluene Volatile organic compound Xylene Air quality Atmospheric chemistry Benchmarking Benzene Concentration (composition) Correlation Cost-benefit analysis Health risk Liquefied petroleum gas Metropolitan area Nitrogen oxides Ozone Public health Toluene Toxic substance Troposphere Volatile organic compound Article Atmosphere City Controlled study Correlation analysis Human Mexican Mexico Motor vehicle Priority journal Federal District [Mexico] Mexico City Mexico [North America] |
description |
The Mexico City Metropolitan Area (MCMA) is one of the most polluted megacities in North America. Therefore, it is an excellent benchmark city to understand atmospheric chemistry and to implement pilot countermeasures. Air quality in the MCMA is not within acceptable levels, mainly due to high ground levels of ozone (O3). Tropospheric O3 is a secondary pollutant formed from the oxidation of volatile organic compounds (VOCs) in the presence of nitrogen oxides and sunlight. To gain a better understanding of O3 formation in megacities, evaluate the effectiveness of already-implemented countermeasures, and identify new cost-effective alternatives to reduce tropospheric O3 concentrations, researchers and environmental authorities require updated concentrations for a broader range of VOCs. Moreover, in an effort to protect human health and the environment, it is important to understand which VOCs exceed reference safe values or most contribute to O3 formation, as well as to identify the most probable emission sources of those VOCs. In this work, 64 VOCs, including 36 toxic VOCs, were measured at four sites in the MCMA during 2011-2012. VOCs related to liquefied petroleum gas leakages exhibited the highest concentrations. Toxic VOCs with the highest average concentrations were acetone and ethanol. The toxic VOC benzene represented the highest risk to Mexican citizens, and toluene contributed the most to O3 formation. Correlation analysis indicated that the measured VOCs come from vehicular emissions and solvent-related industrial sources. VOC measurements revealed that compounds related to liquefied petroleum gas leakages are the most abundant, the toxic VOC benzene represents the highest risk to citizens, and toluene is the greatest VOC contributor to O3 formation in Mexico City. © 2015 Elsevier Ltd. |
publishDate |
2015 |
dc.date.issued.none.fl_str_mv |
2015 |
dc.date.accessioned.none.fl_str_mv |
2019-11-06T19:05:18Z |
dc.date.available.none.fl_str_mv |
2019-11-06T19:05:18Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasVersion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
Atmospheric Environment; Vol. 119, pp. 415-429 |
dc.identifier.issn.none.fl_str_mv |
1352-2310 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/8752 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.atmosenv.2015.08.014 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
identifier_str_mv |
Atmospheric Environment; Vol. 119, pp. 415-429 1352-2310 10.1016/j.atmosenv.2015.08.014 Universidad Tecnológica de Bolívar Repositorio UTB |
url |
https://hdl.handle.net/20.500.12585/8752 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessRights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Ltd |
publisher.none.fl_str_mv |
Elsevier Ltd |
dc.source.none.fl_str_mv |
https://www2.scopus.com/inward/record.uri?eid=2-s2.0-84940477852&doi=10.1016%2fj.atmosenv.2015.08.014&partnerID=40&md5=e3e3e3503765915e28cc7d85c2539f3a Scopus 55382377200 Scopus 7103267573 Scopus 9639625300 Scopus 54402814900 Scopus 55993708900 Scopus 12809336300 Scopus 7404539667 Scopus 7006407675 Scopus 22957247600 |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/8752/1/DOI10_1016j_atmosenv_2015_08_014.pdf https://repositorio.utb.edu.co/bitstream/20.500.12585/8752/4/DOI10_1016j_atmosenv_2015_08_014.pdf.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/8752/5/DOI10_1016j_atmosenv_2015_08_014.pdf.jpg |
bitstream.checksum.fl_str_mv |
4202a7f96aa57968470e07dd32ccf929 64d7b69c15e08a6a47670f4da82125bc a8c12fe642ebdf691d939d55b0ec43ad |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021646476902400 |
spelling |
2019-11-06T19:05:18Z2019-11-06T19:05:18Z2015Atmospheric Environment; Vol. 119, pp. 415-4291352-2310https://hdl.handle.net/20.500.12585/875210.1016/j.atmosenv.2015.08.014Universidad Tecnológica de BolívarRepositorio UTBThe Mexico City Metropolitan Area (MCMA) is one of the most polluted megacities in North America. Therefore, it is an excellent benchmark city to understand atmospheric chemistry and to implement pilot countermeasures. Air quality in the MCMA is not within acceptable levels, mainly due to high ground levels of ozone (O3). Tropospheric O3 is a secondary pollutant formed from the oxidation of volatile organic compounds (VOCs) in the presence of nitrogen oxides and sunlight. To gain a better understanding of O3 formation in megacities, evaluate the effectiveness of already-implemented countermeasures, and identify new cost-effective alternatives to reduce tropospheric O3 concentrations, researchers and environmental authorities require updated concentrations for a broader range of VOCs. Moreover, in an effort to protect human health and the environment, it is important to understand which VOCs exceed reference safe values or most contribute to O3 formation, as well as to identify the most probable emission sources of those VOCs. In this work, 64 VOCs, including 36 toxic VOCs, were measured at four sites in the MCMA during 2011-2012. VOCs related to liquefied petroleum gas leakages exhibited the highest concentrations. Toxic VOCs with the highest average concentrations were acetone and ethanol. The toxic VOC benzene represented the highest risk to Mexican citizens, and toluene contributed the most to O3 formation. Correlation analysis indicated that the measured VOCs come from vehicular emissions and solvent-related industrial sources. VOC measurements revealed that compounds related to liquefied petroleum gas leakages are the most abundant, the toxic VOC benzene represents the highest risk to citizens, and toluene is the greatest VOC contributor to O3 formation in Mexico City. © 2015 Elsevier Ltd.Japan Science and Technology Agency, Science and Technology Research Partnership for Sustainable Development, Japan International Cooperation Agency1,3 butadiene, 106-99-0, 25339-57-5; 1,4 dichlorobenzene, 106-46-7; acetone, 67-64-1; alcohol, 64-17-5; benzene, 71-43-2; ethylbenzene, 100-41-4; gasoline, 86290-81-5; methyl chloride, 74-87-3; ozone, 10028-15-6; propane, 74-98-6; styrene, 100-42-5; toluene, 108-88-3; xylene, 1330-20-7Recurso electrónicoapplication/pdfengElsevier Ltdhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2https://www2.scopus.com/inward/record.uri?eid=2-s2.0-84940477852&doi=10.1016%2fj.atmosenv.2015.08.014&partnerID=40&md5=e3e3e3503765915e28cc7d85c2539f3aScopus 55382377200Scopus 7103267573Scopus 9639625300Scopus 54402814900Scopus 55993708900Scopus 12809336300Scopus 7404539667Scopus 7006407675Scopus 22957247600Volatile organic compounds in the atmosphere of Mexico Cityinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1OzoneOzone formation potentialToxic volatile organic compoundVolatile organic compoundAcetoneAir qualityAtmospheric chemistryBenzeneCost effectivenessGas chromatographyIndustrial emissionsIonization of gasesLiquefied petroleum gasNitrogen oxidesOrganic compoundsOzoneTolueneTroposphereAverage concentrationCorrelation analysisEmission sourcesEnvironmental AuthorityIndustrial sourcesMexico City metropolitan areasOzone formation potentialsVehicular emissionVolatile organic compounds1,3 butadiene1,4 dichlorobenzeneAcetoneAlcoholBenzeneEthylbenzeneGasolineMethyl chlorideOzonePetroleum derivativePropaneStyreneTolueneVolatile organic compoundXyleneAir qualityAtmospheric chemistryBenchmarkingBenzeneConcentration (composition)CorrelationCost-benefit analysisHealth riskLiquefied petroleum gasMetropolitan areaNitrogen oxidesOzonePublic healthTolueneToxic substanceTroposphereVolatile organic compoundArticleAtmosphereCityControlled studyCorrelation analysisHumanMexicanMexicoMotor vehiclePriority journalFederal District [Mexico]Mexico CityMexico [North America]Garzón, J.P.Huertas, J.I.Magaña, M.Huertas, M.E.Cárdenas, B.Watanabe, T.Maeda, T.Wakamatsu, S.Blanco, S.Apel, E.C., Emmons, L.K., Karl, T., Flocke, F., Hills, A.J., Madronich, S., Lee-Taylor, J., Riemer, D.D., Chemical evolution of volatile organic compounds in the outflow of the Mexico City Metropolitan Area (2010) Atmos. Chem. Phys., 10 (5), pp. 2353-2375Arnold, S.R., Methven, J., Evans, M.J., Chipperfield, M.P., Lewis, A.C., Hopkins, J.R., McQuaid, J.B., Rappenglueck, B., Statistical inference of OH concentrations and air mass dilution rates from successive observations of nonmethane hydrocarbons in single air masses (2007) J. Geophys. Res. Atmos., 112 (D10)Arriaga-Colina, J.L., West, J.J., Sosa, G., Escalona, S.S., Ordunez, R.M., Cervantes, A.D.M., Measurements of VOCs in Mexico City (1992-2001) and evaluation of VOCs and CO in the emissions inventory (2004) Atmos. Environ., 38 (16), pp. 2523-2533Atkinson, R., Atmospheric chemistry of VOCs and NOx (2000) Atmos. Environ., 34, pp. 2063-2101Baker, A.K., Beyersdorf, A.J., Doezema, L.A., Katzenstein, A., Meinardi, S., Simpson, I.J., Blake, D.R., Rowland, F.S., Measurements of nonmethane hydrocarbons in 28 United States cities (2008) Atmos. Environ., 42 (1), pp. 170-182Blake, D.R., Rowland, F.S., Urban leakage of liquefied petroleum gas and its impact on Mexico City air quality (1995) Science, 269 (5226), pp. 953-956Bravo, H., Sosa, R., Sanchez, P., Bueno, E., Gonzalez, L., Concentrations of benzene and toluene in the atmosphere of the Southwestern area at the Mexico City Metropolitan Zone (2002) Atmos. Environ., 36 (23), pp. 3843-3849Carter, W.P.L., Development of ozone reactivity scales for volatile organic compounds (1994) J. Air Waste Manag. Assoc., 44, pp. 881-899Carter, W.P.L., Updated maximum incremental reactivity scale and hydrocarbon bin reactivities for regulatory applications (2010) Calif. Air Resour. Board, 1, pp. 1-23Celebi, U.B., Vardar, N., Investigation of VOC emissions from indoor and outdoor painting processes in shipyards (2008) Atmos. Environ., 42 (22), pp. 5685-5695Chang, C.C., Sree, U., Lin, Y.S., Lo, J.G., An examination of 7:00-9:00 PM ambient air volatile organics in different seasons of Kaohsiung city, southern Taiwan (2005) Atmos. Environ., 39 (5), pp. 867-884Chatfield, R.B., Gardner, E.P., Calvert, J.G., Sources and sinks of acetone in the troposphere - behavior of reactive hydrocarbons and a stable product (1987) J. Geophys. Res. Atmos., 92 (D4), pp. 4208-4216Chen, J.J., Luo, D.M., Ozone formation potentials of organic compounds from different emission sources in the South Coast Air Basin of California (2012) Atmos. Environ., 55, pp. 448-455De Foy, B., Fast, J.D., Paech, S.J., Phillips, D., Walters, J.T., Coulter, R.L., Martin, T.J., Molina, L.T., Basin-scale wind transport during the MILAGRO field campaign and comparison to climatology using cluster analysis (2008) Atmos. Chem. Phys., 8 (5), pp. 1209-1224Emmons, L.K., Apel, E.C., Lamarque, J.F., Hess, P.G., Avery, M., Blake, D., Brune, W., Wiedinmyer, C., Impact of Mexico City emissions on regional air quality from MOZART-4 simulations (2010) Atmos. Chem. Phys., 10 (13), pp. 6195-6212(1999) Administration of Air Pollution Control, , Tokyo, Japan(1991) Effects of Indoor Air Pollution on Human Health, , http://buildingecology.com/publications/ECA_Report10.pdf, Report No. 10. LuxembourgGelencser, A., Siszler, K., Hlavay, J., Toluene-benzene concentration ratio as a tool for characterizing the distance from vehicular emission sources (1997) Environ. Sci. Technol., 31 (10), pp. 2869-2872Goldstein, A.H., Fan, S.M., Goulden, M.L., Munger, J.W., Wofsy, S.C., Emissions of ethene, propene, and 1-butene by a midlatitude forest (1996) J. Geophys. Res. Atmos., 101 (D4), pp. 9149-9157Guo, H., Murray, F., Characterization of total volatile organic compound emissions from paints (2000) Clean Prod. Process., 2 (1), pp. 28-36Hu, L., Millet, D.B., Kim, S.Y., Wells, K.C., Griffis, T.J., Fischer, E.V., Helmig, D., Curtis, A.J., North American acetone sources determined from tall tower measurements and inverse modeling (2013) Atmos. Chem. Phys., 13 (6), pp. 3379-3392(2013) Primer on Short-lived Climate Pollutant, , http://www.igsd.org/documents/PrimeronShort-LivedClimatePollutants23april2013EV.pdf, Washington, DCIslas, V.H.S., Arroyo, J., Lelis, M., Ruvalcaba, J., Implementing sustainable urban travel policies in Mexico (2011) Proceedings of the International Transport Forum, 14, pp. 1-45Jorquera, H., Rappengluck, B., Receptor modeling of ambient VOC at Santiago, Chile (2004) Atmos. Environ., 38 (25), pp. 4243-4263Karl, T., Apel, E., Hodzic, A., Riemer, D.D., Blake, D.R., Wiedinmyer, C., Emissions of volatile organic compounds inferred from airborne flux measurements over a megacity (2009) Atmos. Chem. Phys., 9 (1), pp. 271-285Kirstine, W.V., Galbally, I.E., The global atmospheric budget of ethanol revisited (2012) Atmos. Chem. Phys., 12 (1), pp. 545-555Lee, S.C., Chiu, M.Y., Ho, K.F., Zou, S.C., Wang, X., Volatile organic compounds (VOCs) in urban atmosphere of Hong Kong (2002) Chemosphere, 48 (3), pp. 375-382Lei, W., De Foy, B., Zavala, M., Volkamer, R., Molina, L.T., Characterizing ozone production in the Mexico City Metropolitan Area: a case study using a chemical transport model (2007) Atmos. Chem. Phys., 7, pp. 1347-1366Leuchner, M., Rappengluck, B., VOC source-receptor relationships in Houston during TexAQS-II (2010) Atmos. Environ., 44 (33), pp. 4056-4067Lindfors, V., Laurila, T., Biogenic volatile organic compound (VOC) emissions from forests in Finland (2000) Boreal Environ. Res., 5 (2), pp. 95-113Liu, P.-W.G., Yao, Y.-C., Tsai, J.-H., Hsu, Y.-C., Chang, L.-P., Chang, K.-H., Source impacts by volatile organic compounds in an industrial city of southern Taiwan (2008) Sci. Total Environ., 398 (1-3), pp. 154-163(1994) MARI: Mexico City Air Quality Initiative, , http://www.osti.gov/scitech/servlets/purl/10161823, Los Alamos National Laboratory and the Mexican Petroleum Institute Report # LA-12699: Los Alamos, New MexicoMartins, L.D., Andrade, M.D., Ynoue, R.Y., de Albuquerque, E.L., Tomaz, E., Vasconcellos, P.D., Ambiental volatile organic compounds in the megacity of Sao Paulo (2008) Quim. Nova, 31 (8), pp. 2009-2013Mehta, D., Nguyen, A., Montenegro, A., Li, Z., A kinetic study of the reaction of OH with xylenes using the relative rate/discharge flow/mass spectrometry technique (2009) J. Phys. Chem., 113 (46), pp. 12942-12951(1997) Environmental Quality Standards in Japan: Air Quality, Tokyo, Japan, , http://www.env.go.jp/en/air/aq/aq.htmlMolina, L.T., Kolb, C.E., de Foy, B., Lamb, B.K., Brune, W.H., Jimenez, J.L., Ramos-Villegas, R., Molina, M.J., Air quality in North America's most populous city - overview of the MCMA-2003 campaign (2007) Atmos. Chem. Phys., 7 (10), pp. 2447-2473Molina, L.T., de Foy, B., Vásquez-Martínez, O., Páramo, V.H., Air quality, weather and climate in Mexico City (2009) WMO Bull. Weather Clim. Water, 58 (1), pp. 48-53Molina, L.T., Madronich, S., Gaffney, J.S., Apel, E., de Foy, B., Fast, J., Ferrare, R., Zavala, M., An overview of the MILAGRO 2006 campaign: Mexico City emissions and their transport and transformation (2010) Atmos. Chem. Phys., 10 (18), pp. 8697-8760Na, K., Kim, Y.P., Moon, I., Moon, K.C., Chemical composition of major VOC emission sources in the Seoul atmosphere (2004) Chemosphere, 55 (4), pp. 585-594Na, K., Moon, K.C., Kim, Y.P., Source contribution to aromatic VOC concentration and ozone formation potential in the atmosphere of Seoul (2005) Atmos. Environ., 39 (30), pp. 5517-5524(2007) NIOSH Pocket Guide to Chemical Hazards, , http://www.cdc.gov/niosh/idlh/intridl4.html, Public law Publication No. 2005-149Nickerson, E.C., Sosa, G., Hochstein, H., McCaslin, P., Luke, W., Schanot, A., Project AGUILA - insitu measurements of Mexico City air pollution by a research aircraft (1992) Atmos. Environ. Part B Urban Atmos., 26 (4), pp. 445-451(2012) Toxic and Hazardous Substances: Identification, Classification, and Regulation of Carcinogens, , https://www.osha.gov/pls/oshaweb/owadisp.show_document?p_table=STANDARDS&p_id=11378, Public Law OSHA, 29 CFROgawa, H., Li, T., Volatile organic compounds in exhaust gas from diesel engines under various operating conditions (2011) Int. J. Engine Res., 12 (1), pp. 30-40Parrish, D.D., Ryerson, T.B., Mellqvist, J., Johansson, J., Fried, A., Richter, D., Walega, J.G., Herndon, S.C., Primary and secondary sources of formaldehyde in urban atmospheres: Houston Texas region (2012) Atmos. Chem. Phys., 12 (7), pp. 3273-3288Riuttanen, L., Hulkkonen, M., Dal Maso, M., Junninen, H., Kulmala, M., Trajectory analysis of atmospheric transport of fine particles, SO2, NOx and O-3 to the SMEAR II station in Finland in 1996-2008 (2013) Atmos. Chem. Phys., 13 (4), pp. 2153-2164Rogers, T.M., Grimsrud, E.R., Herndon, S.C., Jayne, J.T., Kolb, C.E., Allwine, E., Westberg, H., Knighton, W.B., On-road measurements of volatile organic compounds in the Mexico City Metropolitan Area using proton transfer reaction mass spectrometry (2006) Int. J. Mass Spectrom., 252 (1), pp. 26-37Ruiz, M.E.A., Jose, L., Garcia, I., Determinación de compuestos orgánicos volátiles en la atmósfera de la Ciudad de México mediante el uso de sistemas ópticos y métodos convencionales (1996) Atmós. Univ. Nac. Autón. Méx. (UNAM), 9 (2), pp. 119-135Schmitz, T., Hassel, D., Weber, F.J., Determination of VOC-components in the exhaust of gasoline and diesel passenger cars (2000) Atmos. Environ., 34 (27), pp. 4639-4647(2008) Liquefied Petroleum Gas Market Outlook 2008-2017, , http://www.sener.gob.mx/res/PE_y_DT/pub/LPG%20Outlook%202008-2017.pdf, Ciudad de México, DF(2008) Informe Técnico de Monitoreo y Evaluación de las Concentraciones de Compuestos Orgánicos Volátiles en la Zona Metropolitana de la Ciudad de México, , http://www.sma.df.gob.mx/sma/links/download/archivos/informe_tecnico_covs.pdf, Ciudad de México, DF(2010) Calidad del aire en la Ciudad de México: Informe 2010, , http://www.sedema.df.gob.mx/flippingbook/informe_anual_calidad_aire_2010, Ciudad de México, DF(2012) Calidad del aire en la Ciudad de México: 25 años de monitoreo atmosférico 1986-2011Informe 2011, , http://www.sedema.df.gob.mx/flippingbook/informe_anual_calidad_aire_2011, Ciudad de México, DF(2012) Inventario de Emisiones de la Zona Metropolitana del Valle de México: Contaminantes Tóxicos, , http://www.sedema.df.gob.mx/flippingbook/inventario-emisiones-zmvm-toxicos2010/, Ciudad de México, DF(2013) Base de datos del sistema de monitoreo atmosférico de la Ciudad de México (SIMAT), , http://www.aire.df.gob.mx/default.php?opc=%27aKBhnmI=%27&opcion=Zg==, Ciudad de México, DF(2010) Inventario de Emisiones de la Zona Metropolitana del Valle de México: Contaminantes criterio, , http://www.sedema.df.gob.mx/flippingbook/inventario-emisiones-zmvm-criterio2010/, Ciudad de México DF(2012) Inventario de Emisiones de la Zona Metropolitana del Valle de México: Contaminantes tóxicos, , http://www.sma.df.gob.mx/sma/links/download/biblioteca/inventarios_emisiones2010/ieTOX10_.pdf, Ciudad de México, DF(2002) Norma Oficial Mexicana NOM-010-STPS-1999, , http://www.stps.gob.mx/bp/secciones/dgsst/normatividad/normas/Nom-010.pdfSillman, S., The relation between ozone, NOx and hydrocarbons in urban and polluted rural environments (1999) Atmos. Environ., 33 (12), pp. 1821-1845Song, Y., Dai, W., Shao, M., Liu, Y., Lu, S., Kuster, W., Goldan, P., Comparison of receptor models for source apportionment of volatile organic compounds in Beijing, China (2008) Environ. Pollut., 156 (1), pp. 174-183Streit, G.E., Guzman, F., Mexico City air quality: progress of an international collaborative project to define air quality management options (1996) Atmos. Environ., 30 (5), pp. 723-733Sun, Y., Genton, M.G., Functional boxplots (2011) J. Comput. Graph. Stat., 20 (2), pp. 316-334Suthawaree, J., Tajima, Y., Khunchornyakong, A., Kato, S., Sharp, A., Kajii, Y., Identification of volatile organic compounds in suburban Bangkok, Thailand and their potential for ozone formation (2012) Atmos. Res., 104, pp. 245-254Thornhill, D.A., Williams, A.E., Onasch, T.B., Wood, E., Herndon, S.C., Kolb, C.E., Knighton, W.B., Marr, L.C., Application of positive matrix factorization to on-road measurements for source apportionment of diesel- and gasoline-powered vehicle emissions in Mexico City (2010) Atmos. Chem. Phys., 10 (8), pp. 3629-3644Tsai, D.-H., Wang, M.-L., Wang, C.-H., Chan, C.-C., A study of ground-level ozone pollution, ozone precursors and subtropical meteorological conditions in central Taiwan (2008) J. Environ. Monit., 10 (1), pp. 109-118(2011) World Urbanizations Prospects: The 2011 Revision, , http://esa.un.org/unup/pdf/WUP2011_Highlights.pdf, New York(1999) Compendium Method TO-14A. Determination of Volatile Organic Compounds (VOCs) in Ambient Air Using Specially Prepared Canisters with Subsequent Analysis by Gas Chromatography, , EPA/625/R-96/010b(1999) Compendium Method TO-15. Determination of Volatile Organic Compounds (VOCs) in Air Collected in Specially-prepared Canisters and Analyzed by Gas Chromatography/Mass Spectrometry (GC/MS), , EPA/625/R-96/010bVelasco, E., Lamb, B., Pressley, S., Allwine, E., Westberg, H., Jobson, B.T., Alexander, M., Molina, M., Flux measurements of volatile organic compounds from an urban landscape (2005) Geophys. Res. Lett., 32 (20)Velasco, E., Lamb, B., Westberg, H., Allwine, E., Sosa, G., Arriaga-Colina, J.L., Jobson, B.T., Molina, M.J., Distribution, magnitudes, reactivities, ratios and diurnal patterns of volatile organic compounds in the Valley of Mexico during the MCMA 2002 & 2003 field campaigns (2007) Atmos. Chem. Phys., 7, pp. 329-353Velasco, E., Marquez, C., Bueno, E., Bernabe, R.M., Sanchez, A., Fentanes, O., Wohrnschimmel, H., Molina, L.T., Vertical distribution of ozone and VOCs in the low boundary layer of Mexico City (2008) Atmos. Chem. Phys., 8 (12), pp. 3061-3079Velasco, E., Pressley, S., Grivicke, R., Allwine, E., Coons, T., Foster, W., Jobson, B.T., Lamb, B., Eddy covariance flux measurements of pollutant gases in urban Mexico City (2009) Atmos. Chem. Phys., 9 (19), pp. 7325-7342Von Schneidemesser, E., Monks, P.S., Plass-Duelmer, C., Global comparison of VOC and CO observations in urban areas (2010) Atmos. Environ., 44 (39), pp. 5053-5064Watson, J.G., Chow, J.C., Fujita, E.M., Review of volatile organic compound source apportionment by chemical mass balance (2001) Atmos. Environ., 35 (9), pp. 1567-1584White, M.L., Russo, R.S., Zhou, Y., Mao, H., Varner, R.K., Ambrose, J., Veres, P., Sive, B.C., Volatile organic compounds in northern New England marine and continental environments during the ICARTT 2004 campaign (2008) J. Geophys. Res. Atmos., 113 (D8)Wöhrnschimmel, H., Magaña, M., Stahel, W.A., Blanco, S., Acuña, S., Pérez, J.M., González, S., Cárdenas, B., Measurements and receptor modeling of volatile organic compounds in Southeastern Mexico City, 2000-2007 (2010) Atmos. Chem. Phys., 10 (18), pp. 9027-9037Yang, K.L., Ting, C.C., Wang, J.L., Wingenter, O.W., Chan, C.C., Diurnal and seasonal cycles of ozone precursors observed from continuous measurement at an urban site in Taiwan (2005) Atmos. Environ., 39 (18), pp. 3221-3230Yokelson, R.J., Burling, I.R., Gilman, J.B., Warneke, C., Stockwell, C.E., De Gouw, J., Akagi, S.K., Weise, D.R., Coupling field and laboratory measurements to estimate the emission factors of identified and unidentified trace gases for prescribed fires (2013) Atmos. Chem. Phys., 13, pp. 89-116Yuan, Z.B., Lau, A.K.H., Shao, M., Louie, P.K.K., Liu, S.C., Zhu, T., Source analysis of volatile organic compounds by positive matrix factorization in urban and rural environments in Beijing (2009) J. Geophys. Res. Atmos., 114Zalel, A., Yuval, B.D.M., Revealing source signatures in ambient BTEX concentrations (2008) Environ. Pollut., 156 (2), pp. 553-562Zavala, M., Herndon, S.C., Slott, R.S., Dunlea, E.J., Marr, L.C., Shorter, J.H., Zahniser, M., Molina, M.J., Characterization of on-road vehicle emissions in the Mexico City Metropolitan Area using a mobile laboratory in chase and fleet average measurement modes during the MCMA-2003 field campaign (2006) Atmos. Chem. Phys., 6, pp. 5129-5142Zhang, R.Y., Tie, X.X., Bond, D.W., Impacts of anthropogenic and natural NOx sources over the US on tropospheric chemistry (2003) Proc. Natl. Acad. Sci. U. S. A., 100 (4), pp. 1505-1509Zhang, J., Wang, T., Chameides, W.L., Cardelino, C., Blake, D.R., Streets, D.G., Source characteristics of volatile organic compounds during high ozone episodes in Hong Kong, Southern China (2008) Atmos. Chem. Phys., 8 (16), pp. 4983-4996Zheng, J., Garzón, J.P., Huertas, M.E., Zhang, R., Levy, M., Ma, Y., Huertas, J.I., Molina, L.T., Volatile organic compounds in Tijuana during the Cal-Mex 2010 campaign: measurements and source apportionment (2013) Atmos. Environ., 70, pp. 521-531http://purl.org/coar/resource_type/c_6501ORIGINALDOI10_1016j_atmosenv_2015_08_014.pdfapplication/pdf3474454https://repositorio.utb.edu.co/bitstream/20.500.12585/8752/1/DOI10_1016j_atmosenv_2015_08_014.pdf4202a7f96aa57968470e07dd32ccf929MD51TEXTDOI10_1016j_atmosenv_2015_08_014.pdf.txtDOI10_1016j_atmosenv_2015_08_014.pdf.txtExtracted texttext/plain79455https://repositorio.utb.edu.co/bitstream/20.500.12585/8752/4/DOI10_1016j_atmosenv_2015_08_014.pdf.txt64d7b69c15e08a6a47670f4da82125bcMD54THUMBNAILDOI10_1016j_atmosenv_2015_08_014.pdf.jpgDOI10_1016j_atmosenv_2015_08_014.pdf.jpgGenerated Thumbnailimage/jpeg76819https://repositorio.utb.edu.co/bitstream/20.500.12585/8752/5/DOI10_1016j_atmosenv_2015_08_014.pdf.jpga8c12fe642ebdf691d939d55b0ec43adMD5520.500.12585/8752oai:repositorio.utb.edu.co:20.500.12585/87522020-10-23 04:47:50.809Repositorio Institucional UTBrepositorioutb@utb.edu.co |