Spatio Temporal Filtering of Multi-lead ECG Signals for Atrial Arrhythmia Classification

Atrial fibrillation (AF) is the most common cardiac arrhythmia and increases the risk of suffering stroke. Some people with AF do not have symptoms, so, its diagnosis can be difficult, especially in early stages of the disease. In this paper, we propose the use of the spatio-Temporal filter (STF) to...

Full description

Autores:
Giraldo-Guzman, Jader
Contreras-Ortiz, Sonia H.
Castells, Francisco
Kotas, Marian
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12140
Acceso en línea:
https://hdl.handle.net/20.500.12585/12140
Palabra clave:
Atrial fibrillation
ECG signal processing
P wave
QRST cancellation
Spatio-Temporal filtering
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_a5d1eb856e2eab242bb03f0fc2dd6887
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12140
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Spatio Temporal Filtering of Multi-lead ECG Signals for Atrial Arrhythmia Classification
title Spatio Temporal Filtering of Multi-lead ECG Signals for Atrial Arrhythmia Classification
spellingShingle Spatio Temporal Filtering of Multi-lead ECG Signals for Atrial Arrhythmia Classification
Atrial fibrillation
ECG signal processing
P wave
QRST cancellation
Spatio-Temporal filtering
title_short Spatio Temporal Filtering of Multi-lead ECG Signals for Atrial Arrhythmia Classification
title_full Spatio Temporal Filtering of Multi-lead ECG Signals for Atrial Arrhythmia Classification
title_fullStr Spatio Temporal Filtering of Multi-lead ECG Signals for Atrial Arrhythmia Classification
title_full_unstemmed Spatio Temporal Filtering of Multi-lead ECG Signals for Atrial Arrhythmia Classification
title_sort Spatio Temporal Filtering of Multi-lead ECG Signals for Atrial Arrhythmia Classification
dc.creator.fl_str_mv Giraldo-Guzman, Jader
Contreras-Ortiz, Sonia H.
Castells, Francisco
Kotas, Marian
dc.contributor.author.none.fl_str_mv Giraldo-Guzman, Jader
Contreras-Ortiz, Sonia H.
Castells, Francisco
Kotas, Marian
dc.subject.keywords.spa.fl_str_mv Atrial fibrillation
ECG signal processing
P wave
QRST cancellation
Spatio-Temporal filtering
topic Atrial fibrillation
ECG signal processing
P wave
QRST cancellation
Spatio-Temporal filtering
description Atrial fibrillation (AF) is the most common cardiac arrhythmia and increases the risk of suffering stroke. Some people with AF do not have symptoms, so, its diagnosis can be difficult, especially in early stages of the disease. In this paper, we propose the use of the spatio-Temporal filter (STF) to characterize atrial activity in ECG recordings and distinguish between normal sinus rhythm (NSR) and atrial arrhythmias. This method allows the effective detection of P waves when they are synchronized with QRS complexes. The distances from the QRS complexes to the detected P waves are characterized by seven dispersion metrics that are used as inputs to three clustering algorithms. The results show classification accuracy of up to 98.88% of NSR and atrial arrhythmias.
publishDate 2021
dc.date.issued.none.fl_str_mv 2021-10
dc.date.accessioned.none.fl_str_mv 2023-07-18T19:31:46Z
dc.date.available.none.fl_str_mv 2023-07-18T19:31:46Z
dc.date.submitted.none.fl_str_mv 2023-07
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
status_str draft
dc.identifier.citation.spa.fl_str_mv J. Giraldo-Guzman, S. H. Contreras-Ortiz, F. Castells and M. Kotas, "Spatio Temporal Filtering of Multi-lead ECG Signals for Atrial Arrhythmia Classification," 2021 IEEE 2nd International Congress of Biomedical Engineering and Bioengineering (CI-IB&BI), Bogota D.C., Colombia, 2021, pp. 1-6, doi: 10.1109/CI-IBBI54220.2021.9626098.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12140
dc.identifier.doi.none.fl_str_mv 10.1109/CI-IBBI54220.2021.9626098
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv J. Giraldo-Guzman, S. H. Contreras-Ortiz, F. Castells and M. Kotas, "Spatio Temporal Filtering of Multi-lead ECG Signals for Atrial Arrhythmia Classification," 2021 IEEE 2nd International Congress of Biomedical Engineering and Bioengineering (CI-IB&BI), Bogota D.C., Colombia, 2021, pp. 1-6, doi: 10.1109/CI-IBBI54220.2021.9626098.
10.1109/CI-IBBI54220.2021.9626098
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12140
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.spatial.none.fl_str_mv Colombia
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv 2021 IEEE 2nd International Congress of Biomedical Engineering and Bioengineering, CI-IB and BI 2021
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12140/1/Spatio%20Temporal%20Filtering%20of%20Multi-lead%20ECG%20Signals%20for%20Atrial%20Arrhythmia%20Classification.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12140/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12140/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12140/4/Spatio%20Temporal%20Filtering%20of%20Multi-lead%20ECG%20Signals%20for%20Atrial%20Arrhythmia%20Classification.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12140/5/Spatio%20Temporal%20Filtering%20of%20Multi-lead%20ECG%20Signals%20for%20Atrial%20Arrhythmia%20Classification.pdf.jpg
bitstream.checksum.fl_str_mv 28b92e24039e02b88953e0b6e6be0629
4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
a60c7b8014b7d7aa0d530828732bdc0c
2e90dac7881a343907b5e384c956c658
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021606468485120
spelling Giraldo-Guzman, Jader723ee2df-784d-45f1-87c6-49e243e49827Contreras-Ortiz, Sonia H.1d56d7f5-97c9-4429-b47d-48ebe97de2a8Castells, Francisco7fe49a07-6f9d-4462-adda-2fc09a85104aKotas, Marian115f4d30-ba45-4bf6-bf66-152b622af835Colombia2023-07-18T19:31:46Z2023-07-18T19:31:46Z2021-102023-07J. Giraldo-Guzman, S. H. Contreras-Ortiz, F. Castells and M. Kotas, "Spatio Temporal Filtering of Multi-lead ECG Signals for Atrial Arrhythmia Classification," 2021 IEEE 2nd International Congress of Biomedical Engineering and Bioengineering (CI-IB&BI), Bogota D.C., Colombia, 2021, pp. 1-6, doi: 10.1109/CI-IBBI54220.2021.9626098.https://hdl.handle.net/20.500.12585/1214010.1109/CI-IBBI54220.2021.9626098Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarAtrial fibrillation (AF) is the most common cardiac arrhythmia and increases the risk of suffering stroke. Some people with AF do not have symptoms, so, its diagnosis can be difficult, especially in early stages of the disease. In this paper, we propose the use of the spatio-Temporal filter (STF) to characterize atrial activity in ECG recordings and distinguish between normal sinus rhythm (NSR) and atrial arrhythmias. This method allows the effective detection of P waves when they are synchronized with QRS complexes. The distances from the QRS complexes to the detected P waves are characterized by seven dispersion metrics that are used as inputs to three clustering algorithms. The results show classification accuracy of up to 98.88% of NSR and atrial arrhythmias.application/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf22021 IEEE 2nd International Congress of Biomedical Engineering and Bioengineering, CI-IB and BI 2021Spatio Temporal Filtering of Multi-lead ECG Signals for Atrial Arrhythmia Classificationinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Atrial fibrillationECG signal processingP waveQRST cancellationSpatio-Temporal filteringCartagena de IndiasCardiovascular Diseases. Cited 1008 times. W. H. Organization lhttp://www.who.int/mediacentre/factsheets/fs317/en/2017Jl, R.V.U. (1983) Sage Risk of Recurrent Stroke in Patients with Atrial Fibrillation and Non-valvular Heart Disease StrokeCotter, P.E., Martin, M.P.J., Ring, L., Warburton, E.A., Belham, M., Pugh, P.J. Incidence of atrial fibrillation detected by implantable loop recorders in unexplained stroke (2013) Neurology, 80 (17), pp. 1546-1550. Cited 203 times. doi: 10.1212/WNL.0b013e31828f1828Jiménez-Serrano, S., Yagüe-Mayans, J., Simarro-Mondéjar, E., Calvo, C.J., Castells, F., Millet, J. Atrial fibrillation detection using feedforward neural networks and automatically extracted signal features (2017) Computing in Cardiology, 44, pp. 1-4. Cited 20 times. http://ieeexplore.ieee.org/xpl/conhome.jsp?punumber=1000157 doi: 10.22489/CinC.2017.341-131Bashar, S.K., DIng, E., Albuquerque, D., Winter, M., Binici, S., Walkey, A.J., McManus, D.D., (...), Chon, K.H. Atrial Fibrillation Detection in ICU Patients: A Pilot Study on MIMIC III Data∗ (Open Access) (2019) Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, art. no. 8856496, pp. 298-301. Cited 10 times. ISBN: 978-153861311-5 doi: 10.1109/EMBC.2019.8856496Andersen, R.S., Poulsen, E.S., Puthusserypady, S. A novel approach for automatic detection of Atrial Fibrillation based on Inter Beat Intervals and Support Vector Machine (2017) Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, art. no. 8037253, pp. 2039-2042. Cited 25 times. ISBN: 978-150902809-2 doi: 10.1109/EMBC.2017.8037253Mei, Z., Gu, X., Chen, H., Chen, W. Automatic atrial fibrillation detection based on heart rate variability and spectral features (Open Access) (2018) IEEE Access, 6, art. no. 8468160, pp. 53566-53575. Cited 30 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639 doi: 10.1109/ACCESS.2018.2871220Islam, S., Ammour, N., Alajlan, N. Atrial fibrillation detection with multiparametric rr interval feature and machine learning technique (2017) , pp. 1-5.Kruger, G.H., Latchamsetty, R., Langhals, N.B., Yokokawa, M., Chugh, A., Morady, F., Oral, H., (...), Berenfeld, O. Bimodal classification algorithm for atrial fibrillation detection from m-health ECG recordings (2019) Computers in Biology and Medicine, 104, pp. 310-318. Cited 15 times. www.elsevier.com/locate/compbiomed doi: 10.1016/j.compbiomed.2018.11.016Ródenas, J., García, M., Alcaraz, R., Rieta, J.J. Wavelet entropy automatically detects episodes of atrial fibrillation from single-lead electrocardiograms (2015) Entropy, 17 (9), pp. 6179-6199. Cited 48 times. http://www.mdpi.com/1099-4300/17/9/6179/pdf doi: 10.3390/e17096179Garcia Teruel, M., Rieta Ibañez, J.J., Alcaraz Martinez, R., Rodenas Garcia, J. Application of the relative wavelet energy to 1 heart rate independent detection of atrial fibrillation (2016)Ladavich, S., Ghoraani, B. Rate-independent detection of atrial fibrillation by statistical modeling of atrial activity (Open Access) (2015) Biomedical Signal Processing and Control, 18, pp. 274-281. Cited 113 times. http://www.elsevier.com/wps/find/journalbibliographicinfo.cws_home/706718/description#bibliographicinfo doi: 10.1016/j.bspc.2015.01.007He, R., Wang, K., Zhao, N., Liu, Y., Yuan, Y., Li, Q., Zhang, H. Automatic detection of atrial fibrillation based on continuous wavelet transform and 2D convolutional neural networks (2018) Frontiers in Physiology, 9 (AUG), art. no. 1206. Cited 79 times. https://www.frontiersin.org/articles/10.3389/fphys.2018.01206/full doi: 10.3389/fphys.2018.01206Xia, Y., Wulan, N., Wang, K., Zhang, H. Detecting atrial fibrillation by deep convolutional neural networks (2018) Computers in Biology and Medicine, 93, pp. 84-92. Cited 213 times. www.elsevier.com/locate/compbiomed doi: 10.1016/j.compbiomed.2017.12.007Zaidi, S.H., Sheikh, S.-A.A., Akhtar, I., Zaidi, T. Differentiation between Atrial Fibrillation and Atrial Flutter using 1D Poincare Maps based on endocardial bipolar intracardiac electrograms extracted from the Right Atria (2016) Proceedings of 2016 13th International Bhurban Conference on Applied Sciences and Technology, IBCAST 2016, art. no. 7429858, pp. 77-84. ISBN: 978-146739127-6 doi: 10.1109/IBCAST.2016.7429858Razzaq, N., Sheikh, S.-A.A., Zaidi, T., Akhtar, I., Ahmed, S.H. Automated differentiation between normal sinus rhythm, atrial tachycardia, atrial flutter and atrial fibrillation during electrophysiology (2017) Proceedings - 2017 IEEE 17th International Conference on Bioinformatics and Bioengineering, BIBE 2017, 2018-January, pp. 266-272. Cited 3 times. ISBN: 978-153861324-5 doi: 10.1109/BIBE.2017.00-43Fujita, H., Cimr, D. Computer Aided detection for fibrillations and flutters using deep convolutional neural network (Open Access) (2019) Information Sciences, 486, pp. 231-239. Cited 110 times. http://www.journals.elsevier.com/information-sciences/ doi: 10.1016/j.ins.2019.02.065Kotas, M., Jezewski, J., Horoba, K., Matonia, A. Application of spatio-temporal filtering to fetal electrocardiogram enhancement (2011) Computer Methods and Programs in Biomedicine, 104 (1), pp. 1-9. Cited 45 times. doi: 10.1016/j.cmpb.2010.07.004Giraldo-Guzmán, J., Kotas, M., Piela, M., Castells, F., Łęski, J.M., Contreras-Ortiz, S.H. Application of spatio-temporal filtering for atrial activity waveforms enhancement (2019) ACM International Conference Proceeding Series, pp. 67-72. Cited 2 times. http://portal.acm.org/ ISBN: 978-145037243-5 doi: 10.1145/3365245.3365262Leski, J.M., Kotas, M. Hierarchical clustering with planar segments as prototypes (Open Access) (2015) Pattern Recognition Letters, 54, pp. 1-10. Cited 11 times. http://www.journals.elsevier.com/pattern-recognition-letters/ doi: 10.1016/j.patrec.2014.11.012http://purl.org/coar/resource_type/c_2df8fbb1ORIGINALSpatio Temporal Filtering of Multi-lead ECG Signals for Atrial Arrhythmia Classification.pdfSpatio Temporal Filtering of Multi-lead ECG Signals for Atrial Arrhythmia Classification.pdfapplication/pdf131396https://repositorio.utb.edu.co/bitstream/20.500.12585/12140/1/Spatio%20Temporal%20Filtering%20of%20Multi-lead%20ECG%20Signals%20for%20Atrial%20Arrhythmia%20Classification.pdf28b92e24039e02b88953e0b6e6be0629MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12140/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12140/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTSpatio Temporal Filtering of Multi-lead ECG Signals for Atrial Arrhythmia Classification.pdf.txtSpatio Temporal Filtering of Multi-lead ECG Signals for Atrial Arrhythmia Classification.pdf.txtExtracted texttext/plain6179https://repositorio.utb.edu.co/bitstream/20.500.12585/12140/4/Spatio%20Temporal%20Filtering%20of%20Multi-lead%20ECG%20Signals%20for%20Atrial%20Arrhythmia%20Classification.pdf.txta60c7b8014b7d7aa0d530828732bdc0cMD54THUMBNAILSpatio Temporal Filtering of Multi-lead ECG Signals for Atrial Arrhythmia Classification.pdf.jpgSpatio Temporal Filtering of Multi-lead ECG Signals for Atrial Arrhythmia Classification.pdf.jpgGenerated Thumbnailimage/jpeg8099https://repositorio.utb.edu.co/bitstream/20.500.12585/12140/5/Spatio%20Temporal%20Filtering%20of%20Multi-lead%20ECG%20Signals%20for%20Atrial%20Arrhythmia%20Classification.pdf.jpg2e90dac7881a343907b5e384c956c658MD5520.500.12585/12140oai:repositorio.utb.edu.co:20.500.12585/121402023-07-19 00:19:16.835Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=