Automated depression detection in text data: leveraging lexical features, phonesthemes embedding, and roberta transformer model

Indexed keywords SciVal Topics Metrics Funding details Abstract Depression is a prevalent mental disorder characterized by persistent sadness, lack of interest, and diminished pleasure. Detecting depression is crucial for timely intervention and support. In this paper, we address the task of depress...

Full description

Autores:
Martinez, Elizabeth
Cuadrado, Juan
Martinez-Santos, Juan Carlos
Peña, Daniel
Puertas, Edwin
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12583
Acceso en línea:
https://hdl.handle.net/20.500.12585/12583
https://ceur-ws.org/Vol-3496/mentalriskes-paper15.pdf
Palabra clave:
Depression
Lexical Features
Mental Risk
Phonesthemes Embedding
Transformers
LEMB
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_a4be6c9596515fc9949600f8c4c43e77
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12583
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Automated depression detection in text data: leveraging lexical features, phonesthemes embedding, and roberta transformer model
title Automated depression detection in text data: leveraging lexical features, phonesthemes embedding, and roberta transformer model
spellingShingle Automated depression detection in text data: leveraging lexical features, phonesthemes embedding, and roberta transformer model
Depression
Lexical Features
Mental Risk
Phonesthemes Embedding
Transformers
LEMB
title_short Automated depression detection in text data: leveraging lexical features, phonesthemes embedding, and roberta transformer model
title_full Automated depression detection in text data: leveraging lexical features, phonesthemes embedding, and roberta transformer model
title_fullStr Automated depression detection in text data: leveraging lexical features, phonesthemes embedding, and roberta transformer model
title_full_unstemmed Automated depression detection in text data: leveraging lexical features, phonesthemes embedding, and roberta transformer model
title_sort Automated depression detection in text data: leveraging lexical features, phonesthemes embedding, and roberta transformer model
dc.creator.fl_str_mv Martinez, Elizabeth
Cuadrado, Juan
Martinez-Santos, Juan Carlos
Peña, Daniel
Puertas, Edwin
dc.contributor.author.none.fl_str_mv Martinez, Elizabeth
Cuadrado, Juan
Martinez-Santos, Juan Carlos
Peña, Daniel
Puertas, Edwin
dc.subject.keywords.spa.fl_str_mv Depression
Lexical Features
Mental Risk
Phonesthemes Embedding
Transformers
topic Depression
Lexical Features
Mental Risk
Phonesthemes Embedding
Transformers
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description Indexed keywords SciVal Topics Metrics Funding details Abstract Depression is a prevalent mental disorder characterized by persistent sadness, lack of interest, and diminished pleasure. Detecting depression is crucial for timely intervention and support. In this paper, we address the task of depression detection in text data, focusing on binary classification and regression. We present our approach, leveraging a dataset comprising labeled messages from Telegram groups related to mental disorders. We begin by exploring the existing literature on depression detection, highlighting the challenges faced and the methods employed. Our approach involves data pre-processing, lexical feature extraction, phonesthemes embedding, and using the RoBERTa transformer model. We achieved promising results in the training phase through rigorous experimentation and model refinement. However, we encountered challenges upon evaluating our approach in the MentalRiskEs evaluation. We identified areas for improvement, particularly in latency and speed of detection for real-time monitoring of depression-related risks. This research contributes to the ongoing efforts in automating depression detection and provides insights into the potential of text analysis techniques for mental health assessment. We remain committed to further enhancing our methodology and advancing the field to improve the well-being of individuals affected by depression.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-12-06T16:09:43Z
dc.date.available.none.fl_str_mv 2023-12-06T16:09:43Z
dc.date.issued.none.fl_str_mv 2023-12-05
dc.date.submitted.none.fl_str_mv 2023-12-05
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.identifier.citation.spa.fl_str_mv Martinez, E., Cuadrado, J., Peña, D., Martinez-Santos, J. C., & Puertas, E. (2023). Automated Depression Detection in Text Data: Leveraging Lexical Features, phonesthemes Embedding, and RoBERTa Transformer Model. In IberLEF (Working Notes). CEUR Workshop Proceedings.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12583
dc.identifier.url.none.fl_str_mv https://ceur-ws.org/Vol-3496/mentalriskes-paper15.pdf
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Martinez, E., Cuadrado, J., Peña, D., Martinez-Santos, J. C., & Puertas, E. (2023). Automated Depression Detection in Text Data: Leveraging Lexical Features, phonesthemes Embedding, and RoBERTa Transformer Model. In IberLEF (Working Notes). CEUR Workshop Proceedings.
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12583
https://ceur-ws.org/Vol-3496/mentalriskes-paper15.pdf
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.iscitedby.none.fl_str_mv Martinez, E., Cuadrado, J., Peña, D., Martinez-Santos, J. C., & Puertas, E. (2023). Automated Depression Detection in Text Data: Leveraging Lexical Features, phonesthemes Embedding, and RoBERTa Transformer Model. In IberLEF (Working Notes). CEUR Workshop Proceedings.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 14 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.publisher.sede.spa.fl_str_mv Campus Tecnológico
dc.publisher.discipline.spa.fl_str_mv Maestría en Ingeniería
dc.source.spa.fl_str_mv Iberian Languages Evaluation Forum
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12583/1/mentalriskes-paper15.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12583/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12583/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12583/4/mentalriskes-paper15.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12583/5/mentalriskes-paper15.pdf.jpg
bitstream.checksum.fl_str_mv 8edae83e2389f17a84fee00b759fbe58
4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
d5e34c76065e1f834563ea1a6070cb8c
fd474efac9704ff8f7911ba529225ade
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021604273815552
spelling Martinez, Elizabeth4ebda059-55c6-4e72-8ce5-81181da731b4Cuadrado, Juan73b693c6-9993-4025-9268-0f1bbe13b105Martinez-Santos, Juan Carlos5c958644-c78d-401d-8ba9-bbd39fe77318Peña, Danield014a16e-e795-4ca4-b9d0-0fb7d9fb850cPuertas, Edwin9e3c6f17-9041-40e3-a5fb-929a21d229012023-12-06T16:09:43Z2023-12-06T16:09:43Z2023-12-052023-12-05Martinez, E., Cuadrado, J., Peña, D., Martinez-Santos, J. C., & Puertas, E. (2023). Automated Depression Detection in Text Data: Leveraging Lexical Features, phonesthemes Embedding, and RoBERTa Transformer Model. In IberLEF (Working Notes). CEUR Workshop Proceedings.https://hdl.handle.net/20.500.12585/12583https://ceur-ws.org/Vol-3496/mentalriskes-paper15.pdfUniversidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarIndexed keywords SciVal Topics Metrics Funding details Abstract Depression is a prevalent mental disorder characterized by persistent sadness, lack of interest, and diminished pleasure. Detecting depression is crucial for timely intervention and support. In this paper, we address the task of depression detection in text data, focusing on binary classification and regression. We present our approach, leveraging a dataset comprising labeled messages from Telegram groups related to mental disorders. We begin by exploring the existing literature on depression detection, highlighting the challenges faced and the methods employed. Our approach involves data pre-processing, lexical feature extraction, phonesthemes embedding, and using the RoBERTa transformer model. We achieved promising results in the training phase through rigorous experimentation and model refinement. However, we encountered challenges upon evaluating our approach in the MentalRiskEs evaluation. We identified areas for improvement, particularly in latency and speed of detection for real-time monitoring of depression-related risks. This research contributes to the ongoing efforts in automating depression detection and provides insights into the potential of text analysis techniques for mental health assessment. We remain committed to further enhancing our methodology and advancing the field to improve the well-being of individuals affected by depression.Universidad Tecnológica de Bolívar14 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Iberian Languages Evaluation ForumAutomated depression detection in text data: leveraging lexical features, phonesthemes embedding, and roberta transformer modelinfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1DepressionLexical FeaturesMental RiskPhonesthemes EmbeddingTransformersLEMBMartinez, E., Cuadrado, J., Peña, D., Martinez-Santos, J. C., & Puertas, E. (2023). Automated Depression Detection in Text Data: Leveraging Lexical Features, phonesthemes Embedding, and RoBERTa Transformer Model. In IberLEF (Working Notes). CEUR Workshop Proceedings.Cartagena de IndiasCampus TecnológicoMaestría en IngenieríaPúblico generalWasserman, D., Iosue, M., Wuestefeld, A., & Carli, V. (2020). Adaptation of evidence‐based suicide prevention strategies during and after the COVID‐19 pandemic. World psychiatry, 19(3), 294-306.Kim, H., Lee, S., Lee, S., Hong, S., Kang, H., & Kim, N. (2019). Depression prediction by using ecological momentary assessment, actiwatch data, and machine learning: observational study on older adults living alone. JMIR mHealth and uHealth, 7(10), e14149.Bolton, J. M., Gunnell, D., & Turecki, G. (2015). Suicide risk assessment and intervention in people with mental illness. Bmj, 351.Hirschberg, J., & Manning, C. D. (2015). Advances in natural language processing. Science, 349(6245), 261-266.Puertas, E., Moreno-Sandoval, L. G., Plaza-del Arco, F. M., Alvarado-Valencia, J. A., Pomares-Quimbaya, A., & Alfonso, L. (2019). Bots and gender profiling on twitter using sociolinguistic features. CLEF (Working Notes), 1-8.Moreno-Sandoval, L. G., Puertas, E., Plaza-del-Arco, F. M., Pomares-Quimbaya, A., Alvarado-Valencia, J. A., & Alfonso, L. (2019). Celebrity profiling on twitter using sociolinguistic. CLEF (Working Notes).Puertas, E., Moreno-Sandoval, L. G., Redondo, J., Alvarado-Valencia, J. A., & Pomares-Quimbaya, A. (2021). Detection of sociolinguistic features in digital social networks for the detection of communities. Cognitive Computation, 13, 518-537.Kabir, M., Ahmed, T., Hasan, M. B., Laskar, M. T. R., Joarder, T. K., Mahmud, H., & Hasan, K. (2023). DEPTWEET: A typology for social media texts to detect depression severities. Computers in Human Behavior, 139, 107503.Shoaib, M., Shah, B., Ei-Sappagh, S., Ali, A., Ullah, A., Alenezi, F., ... & Ali, F. (2023). An advanced deep learning models-based plant disease detection: A review of recent research. Frontiers in Plant Science, 14, 1158933.Mármol-Romero, A. M., Moreno-Muñoz, A., Plaza-del-Arco, F. M., Molina-González, M. D., Martín-Valdivia, M. T., Ureña-López, L. A., & Montejo-Raéz, A. (2023). Overview of MentalriskES at IberLEF 2023: Early Detection of Mental Disorders Risk in Spanish. Procesamiento del Lenguaje Natural, 71, 329-350.Puertas, E. A. (2023). Análisis de elementos fonéticos y elementos emocionales para predecir la polaridad en fuentes de microblogging. Recuperado de: http://hdl.handle.net/10554/63548.Pérez, J. M., Furman, D. A., Alemany, L. A., & Luque, F. (2021). RoBERTuito: A pre-trained language model for social media text in Spanish. ArXiv. /abs/2111.09453Huang, S., Cai, N., Pacheco, P. P., Narrandes, S., Wang, Y., & Xu, W. (2018). Applications of support vector machine (SVM) learning in cancer genomics. Cancer genomics & proteomics, 15(1), 41-51.Puertas, E., & Martinez-Santos, J. C. (2021). Phonetic detection for hate speech spreaders on Twitter.De Choudhury, M., Gamon, M., Counts, S., & Horvitz, E. (2013). Predicting depression via social media. In Proceedings of the international AAAI conference on web and social media (Vol. 7, No. 1, pp. 128-137).Di Cara, N. H., Maggio, V., Davis, O. S., & Haworth, C. M. (2023). Methodologies for monitoring mental health on Twitter: systematic review. Journal of Medical Internet Research, 25, e42734.Burdisso, S. G., Errecalde, M., & Montes-y-Gómez, M. (2019). A text classification framework for simple and effective early depression detection over social media streams. Expert Systems with Applications, 133, 182-197.Chiong, R., Budhi, G. S., Dhakal, S., & Chiong, F. (2021). A textual-based featuring approach for depression detection using machine learning classifiers and social media texts. Computers in Biology and Medicine, 135, 104499.Amanat, A., Rizwan, M., Javed, A. R., Abdelhaq, M., Alsaqour, R., Pandya, S., & Uddin, M. (2022). Deep learning for depression detection from textual data. Electronics, 11(5), 676.Babu, N. V., & Kanaga, E. G. M. (2022). Sentiment analysis in social media data for depression detection using artificial intelligence: a review. SN Computer Science, 3, 1-20.Mustafa, R. U., Ashraf, N., Ahmed, F. S., Ferzund, J., Shahzad, B., & Gelbukh, A. (2020). A multiclass depression detection in social media based on sentiment analysis. In 17th International Conference on Information Technology–New Generations (ITNG 2020) (pp. 659-662). Springer International Publishing.http://purl.org/coar/resource_type/c_6501ORIGINALmentalriskes-paper15.pdfmentalriskes-paper15.pdfmentalriskes-paperapplication/pdf903332https://repositorio.utb.edu.co/bitstream/20.500.12585/12583/1/mentalriskes-paper15.pdf8edae83e2389f17a84fee00b759fbe58MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12583/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12583/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTmentalriskes-paper15.pdf.txtmentalriskes-paper15.pdf.txtExtracted texttext/plain36477https://repositorio.utb.edu.co/bitstream/20.500.12585/12583/4/mentalriskes-paper15.pdf.txtd5e34c76065e1f834563ea1a6070cb8cMD54THUMBNAILmentalriskes-paper15.pdf.jpgmentalriskes-paper15.pdf.jpgGenerated Thumbnailimage/jpeg5790https://repositorio.utb.edu.co/bitstream/20.500.12585/12583/5/mentalriskes-paper15.pdf.jpgfd474efac9704ff8f7911ba529225adeMD5520.500.12585/12583oai:repositorio.utb.edu.co:20.500.12585/125832023-12-07 00:29:39.435Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=