Direct power control of electrical energy storage systems: A passivity-based PI approach

This paper proposes a direct power control for electrical energy storage systems (EESS) in ac microgrids. This strategy allows managing instantaneous active and reactive power without using a conventional inner-loop current regulator and without a phase-locked loop, increasing the reliability of the...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/9017
Acceso en línea:
https://hdl.handle.net/20.500.12585/9017
Palabra clave:
A low-voltage microgrid
Direct power model
Electrical energy storage system
PI passivity-based control
Port-Hamiltonian formulation
Controllers
Energy storage
Feedback linearization
Hamiltonians
Investments
MATLAB
Power control
Electrical energy storage systems
Low voltage microgrid
Passivity based control
Port hamiltonians
Power model
Electric power system control
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_a435ca42e26691289de027d9a832ec33
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/9017
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Direct power control of electrical energy storage systems: A passivity-based PI approach
title Direct power control of electrical energy storage systems: A passivity-based PI approach
spellingShingle Direct power control of electrical energy storage systems: A passivity-based PI approach
A low-voltage microgrid
Direct power model
Electrical energy storage system
PI passivity-based control
Port-Hamiltonian formulation
Controllers
Energy storage
Feedback linearization
Hamiltonians
Investments
MATLAB
Power control
Electrical energy storage systems
Low voltage microgrid
Passivity based control
Port hamiltonians
Power model
Electric power system control
title_short Direct power control of electrical energy storage systems: A passivity-based PI approach
title_full Direct power control of electrical energy storage systems: A passivity-based PI approach
title_fullStr Direct power control of electrical energy storage systems: A passivity-based PI approach
title_full_unstemmed Direct power control of electrical energy storage systems: A passivity-based PI approach
title_sort Direct power control of electrical energy storage systems: A passivity-based PI approach
dc.subject.keywords.none.fl_str_mv A low-voltage microgrid
Direct power model
Electrical energy storage system
PI passivity-based control
Port-Hamiltonian formulation
Controllers
Energy storage
Feedback linearization
Hamiltonians
Investments
MATLAB
Power control
Electrical energy storage systems
Low voltage microgrid
Passivity based control
Port hamiltonians
Power model
Electric power system control
topic A low-voltage microgrid
Direct power model
Electrical energy storage system
PI passivity-based control
Port-Hamiltonian formulation
Controllers
Energy storage
Feedback linearization
Hamiltonians
Investments
MATLAB
Power control
Electrical energy storage systems
Low voltage microgrid
Passivity based control
Port hamiltonians
Power model
Electric power system control
description This paper proposes a direct power control for electrical energy storage systems (EESS) in ac microgrids. This strategy allows managing instantaneous active and reactive power without using a conventional inner-loop current regulator and without a phase-locked loop, increasing the reliability of the system while reducing investment costs. PI passivity-based control (PI-PBC) is selected to control the direct power model of EESS. This is because their models exhibit a port-Hamiltonian formulation in open-loop, and PI-PBC exploits this formulation to design a PI controller, which guarantees global asymptotically stability in closed-loop in the sense of Lyapunov. Simulations tested the proposed model in a microgrid and compared with conventional vector oriented controls in a dq reference frame and a direct power model controlled via feedback linearization (FL). PI-PBC has a better performance than other two controllers in all considered scenarios. Simulation results have conducted through MATLAB/SIMULINK software by using the SimPowerSystem toolbox. © 2019 Elsevier B.V.
publishDate 2019
dc.date.issued.none.fl_str_mv 2019
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:32:46Z
dc.date.available.none.fl_str_mv 2020-03-26T16:32:46Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Electric Power Systems Research; Vol. 175
dc.identifier.issn.none.fl_str_mv 03787796
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/9017
dc.identifier.doi.none.fl_str_mv 10.1016/j.epsr.2019.105885
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 57191493648
56919564100
36449223500
identifier_str_mv Electric Power Systems Research; Vol. 175
03787796
10.1016/j.epsr.2019.105885
Universidad Tecnológica de Bolívar
Repositorio UTB
57191493648
56919564100
36449223500
url https://hdl.handle.net/20.500.12585/9017
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier Ltd
publisher.none.fl_str_mv Elsevier Ltd
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85067625974&doi=10.1016%2fj.epsr.2019.105885&partnerID=40&md5=2d6229ffff15e246faa086da2f29e191
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/9017/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021642476584960
spelling 2020-03-26T16:32:46Z2020-03-26T16:32:46Z2019Electric Power Systems Research; Vol. 17503787796https://hdl.handle.net/20.500.12585/901710.1016/j.epsr.2019.105885Universidad Tecnológica de BolívarRepositorio UTB571914936485691956410036449223500This paper proposes a direct power control for electrical energy storage systems (EESS) in ac microgrids. This strategy allows managing instantaneous active and reactive power without using a conventional inner-loop current regulator and without a phase-locked loop, increasing the reliability of the system while reducing investment costs. PI passivity-based control (PI-PBC) is selected to control the direct power model of EESS. This is because their models exhibit a port-Hamiltonian formulation in open-loop, and PI-PBC exploits this formulation to design a PI controller, which guarantees global asymptotically stability in closed-loop in the sense of Lyapunov. Simulations tested the proposed model in a microgrid and compared with conventional vector oriented controls in a dq reference frame and a direct power model controlled via feedback linearization (FL). PI-PBC has a better performance than other two controllers in all considered scenarios. Simulation results have conducted through MATLAB/SIMULINK software by using the SimPowerSystem toolbox. © 2019 Elsevier B.V.Departamento Administrativo de Ciencia, Tecnología e Innovación, COLCIENCIAS Department of Science, Information Technology and Innovation, Queensland GovernmentThis work was partially supported by the National Scholarship Program Doctorates of the Administrative Department of Science, Technology and Innovation of Colombia (COLCIENCIAS), by calling contest 727-2015.Recurso electrónicoapplication/pdfengElsevier Ltdhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85067625974&doi=10.1016%2fj.epsr.2019.105885&partnerID=40&md5=2d6229ffff15e246faa086da2f29e191Direct power control of electrical energy storage systems: A passivity-based PI approachinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1A low-voltage microgridDirect power modelElectrical energy storage systemPI passivity-based controlPort-Hamiltonian formulationControllersEnergy storageFeedback linearizationHamiltoniansInvestmentsMATLABPower controlElectrical energy storage systemsLow voltage microgridPassivity based controlPort hamiltoniansPower modelElectric power system controlGil-González, WalterMontoya O.D.Garces A.Akinyele, D., Rayudu, R., Review of energy storage technologies for sustainable power networks (2014) Sustain. Energy Technol. Assess., 8, pp. 74-91Parra, D., Swierczynski, M., Stroe, D.I., Norman, S.A., Abdon, A., Worlitschek, J., O'Doherty, T., Zhang, X., An interdisciplinary review of energy storage for communities: challenges and perspectives (2017) Renew. Sustain. Energy Rev., 79, pp. 730-749Zakeri, B., Syri, S., Electrical energy storage systems: A comparative life cycle cost analysis (2015) Renew. Sustain. Energy Rev., 42, pp. 569-596Montoya, O.D., Gil-González, W., Garcés, A., Escobar, A., Grisales, L.F., Nonlinear control for battery energy storage systems in power grids (2018) 2018 IEEE Green Technologies Conference (GreenTech), pp. 65-70Gil-González, Montoya, O.D., Active and reactive power conditioning using SMES devices with PMW-CSC: a feedback nonlinear control approach (2019) Ain Shams Eng. J.Planas, E., Andreu, J., Gárate, J.I., de Alegría, I.M., Ibarra, E., AC and DC technology in microgrids: a review (2015) Renew. Sustain. Energy Rev., 43, pp. 726-749Montoya, O.D., Gil-González, W., Garces, A., Distributed energy resources integration in single-phase microgrids: an application of IDA-PBC and PI-PBC approaches (2019) Int. J. Electr. Power Energy Syst., 112, pp. 221-231Aly, M.M., Abdel-Akher, M., Said, S.M., Senjyu, T., A developed control strategy for mitigating wind power generation transients using superconducting magnetic energy storage with reactive power support (2016) Int. J. Electr. Power Energy Syst., 83, pp. 485-494Gil-González, W., Montoya, Danilo, O., Passivity-based PI control of a SMES system to support power in electrical grids: a bilinear approach (2018) J. Energy Storage, 18, pp. 459-466. , http://www.sciencedirect.com/science/article/pii/S2352152X18300483Rahim, A., Nowicki, E., Supercapacitor energy storage system for fault ride-through of a dfig wind generation system (2012) Energy Convers. Manag., 59, pp. 96-102Ortega, A., Milano, F., Generalized model of VSC-based energy storage systems for transient stability analysis (2016) IEEE Trans. Power Syst., 31 (5), pp. 3369-3380Shi, J., Tang, Y., Ren, L., Li, J., Cheng, S., Discretization-based decoupled state-feedback control for current source power conditioning system of SMES (2008) IEEE Trans. Power Deliv., 23 (4), pp. 2097-2104Shi, J., Zhang, L., Gong, K., Liu, Y., Zhou, A., Zhou, X., Tang, Y., Li, J., Improved discretization-based decoupled feedback control for a series-connected converter of SCC (2016) IEEE Trans. Appl. Supercond., 26 (7), pp. 1-6Ali, M.H., Park, M., Yu, I.K., Murata, T., Tamura, J., Improvement of wind-generator stability by fuzzy-logic-controlled smes (2009) IEEE Trans. Ind. Appl., 45 (3), pp. 1045-1051Mohammedi, M., Kraa, O., Becherif, M., Aboubou, A., Ayad, M., Bahri, M., Fuzzy logic and passivity-based controller applied to electric vehicle using fuel cell and supercapacitors hybrid source (2014) Energy Proc., 50, pp. 619-626Wang, S., Jin, J., Design and analysis of a fuzzy logic controlled smes system (2014) IEEE Trans. Appl. Supercond., 24 (5), pp. 1-5Nguyen, T.T., Yoo, H.J., Kim, H.M., Applying model predictive control to SMES system in microgrids for eddy current losses reduction (2016) IEEE Trans. Appl. Supercond., 26 (4), pp. 1-5Shi, J., Tang, Y., Yang, K., Chen, L., Ren, L., Li, J., Cheng, S., SMES based dynamic voltage restorer for voltage fluctuations compensation (2010) IEEE Trans. Appl. Supercond., 20 (3), pp. 1360-1364Gil-González, W.J., Garcés, A., Escobar, A., A generalized model and control for supermagnetic and supercapacitor energy storage (2017) Ingeniería y Ciencia, 13 (26), pp. 147-171Montoya, O.D., Gil-González, W., Garces, A., Control for EESS in three-phase microgrids under time-domain reference frame via PBC theory (2019) IEEE Trans. Circuits Syst. II, p. 1Montoya, O.D., Gil-González, W., Serra, F., PBC approach for SMES devices in electric distribution networks (2018) IEEE Trans. Circuits Syst. II, 65 (12), pp. 2003-2007Lin, X., Lei, Y., Coordinated control strategies for SMES-battery hybrid energy storage systems (2017) IEEE Access, 5, pp. 23452-23465Hou, R., Song, H., Nguyen, T.-T., Qu, Y., Kim, H.-M., Robustness improvement of superconducting magnetic energy storage system in microgrids using an energy shaping passivity-based control strategy (2017) Energies, 10 (5), p. 671Leon, A.E., Mauricio, J.M., Solsona, J.A., Gomez-Exposito, A., Adaptive control strategy for VSC-based systems under unbalanced network conditions (2010) IEEE Trans. Smart Grid, 1 (3), pp. 311-319Dong, D., Wen, B., Boroyevich, D., Mattavelli, P., Xue, Y., Analysis of phase-locked loop low-frequency stability in three-phase grid-connected power converters considering impedance interactions (2015) IEEE Trans. Ind. Electron., 62 (1), pp. 310-321Gil-González, W., Montoya, O.D., Garces, A., Direct power control for VS-C-HVDC systems: an application of the global tracking passivity-based PI approach (2019) Int. J. Electr. Power Energy Syst., 110, pp. 588-597Cisneros, R., Pirro, M., Bergna, G., Ortega, R., Ippoliti, G., Molinas, M., Global tracking passivity-based pi control of bilinear systems: application to the interleaved boost and modular multilevel converters (2015) Control Eng. Pract., 43, pp. 109-119Montoya, R.C., PI Passivity-Based Control: Application to Physical Systems, Ph.D. Thesis (2016), Université Paris-SaclayPerko, L., (2013) Differential Equations and Dynamical Systems, 7. , Springer Science & Business MediaMontoya, O.D., Garcés, A., Serra, F.M., DERs integration in microgrids using VSCs via proportional feedback linearization control: supercapacitors and distributed generators (2018) J. Energy Storage, 16, pp. 250-258. , http://www.sciencedirect.com/science/article/pii/S2352152X17303912Xu, Y., Ren, L., Zhang, Z., Tang, Y., Shi, J., Xu, C., Li, J., Liu, H., Analysis of the loss and thermal characteristics of a SMES (Superconducting Magnetic Energy Storage) magnet with three practical operating conditions (2018) Energy, 143, pp. 372-384, pp. 1-16. , IEEE Standard for Interconnecting Distributed Resources with Electric Power Systems – Amendment 1, IEEE Std 1547a-2014 (Amendment to IEEE Std 1547-2003), 2014Golestan, S., Guerrero, J.M., Vasquez, J.C., Three-phase PLLs: a review of recent advances (2017) IEEE Trans. Power Electron., 32 (3), pp. 1894-1907Freijedo, F.D., Doval-Gandoy, J., Lopez, O., Acha, E., Tuning of phase-locked loops for power converters under distorted utility conditions (2009) IEEE Trans. Ind. Appl., 45 (6), pp. 2039-2047http://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9017/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9017oai:repositorio.utb.edu.co:20.500.12585/90172023-05-26 10:22:34.086Repositorio Institucional UTBrepositorioutb@utb.edu.co