Direct power control of electrical energy storage systems: A passivity-based PI approach
This paper proposes a direct power control for electrical energy storage systems (EESS) in ac microgrids. This strategy allows managing instantaneous active and reactive power without using a conventional inner-loop current regulator and without a phase-locked loop, increasing the reliability of the...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/9017
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/9017
- Palabra clave:
- A low-voltage microgrid
Direct power model
Electrical energy storage system
PI passivity-based control
Port-Hamiltonian formulation
Controllers
Energy storage
Feedback linearization
Hamiltonians
Investments
MATLAB
Power control
Electrical energy storage systems
Low voltage microgrid
Passivity based control
Port hamiltonians
Power model
Electric power system control
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_a435ca42e26691289de027d9a832ec33 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/9017 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
Direct power control of electrical energy storage systems: A passivity-based PI approach |
title |
Direct power control of electrical energy storage systems: A passivity-based PI approach |
spellingShingle |
Direct power control of electrical energy storage systems: A passivity-based PI approach A low-voltage microgrid Direct power model Electrical energy storage system PI passivity-based control Port-Hamiltonian formulation Controllers Energy storage Feedback linearization Hamiltonians Investments MATLAB Power control Electrical energy storage systems Low voltage microgrid Passivity based control Port hamiltonians Power model Electric power system control |
title_short |
Direct power control of electrical energy storage systems: A passivity-based PI approach |
title_full |
Direct power control of electrical energy storage systems: A passivity-based PI approach |
title_fullStr |
Direct power control of electrical energy storage systems: A passivity-based PI approach |
title_full_unstemmed |
Direct power control of electrical energy storage systems: A passivity-based PI approach |
title_sort |
Direct power control of electrical energy storage systems: A passivity-based PI approach |
dc.subject.keywords.none.fl_str_mv |
A low-voltage microgrid Direct power model Electrical energy storage system PI passivity-based control Port-Hamiltonian formulation Controllers Energy storage Feedback linearization Hamiltonians Investments MATLAB Power control Electrical energy storage systems Low voltage microgrid Passivity based control Port hamiltonians Power model Electric power system control |
topic |
A low-voltage microgrid Direct power model Electrical energy storage system PI passivity-based control Port-Hamiltonian formulation Controllers Energy storage Feedback linearization Hamiltonians Investments MATLAB Power control Electrical energy storage systems Low voltage microgrid Passivity based control Port hamiltonians Power model Electric power system control |
description |
This paper proposes a direct power control for electrical energy storage systems (EESS) in ac microgrids. This strategy allows managing instantaneous active and reactive power without using a conventional inner-loop current regulator and without a phase-locked loop, increasing the reliability of the system while reducing investment costs. PI passivity-based control (PI-PBC) is selected to control the direct power model of EESS. This is because their models exhibit a port-Hamiltonian formulation in open-loop, and PI-PBC exploits this formulation to design a PI controller, which guarantees global asymptotically stability in closed-loop in the sense of Lyapunov. Simulations tested the proposed model in a microgrid and compared with conventional vector oriented controls in a dq reference frame and a direct power model controlled via feedback linearization (FL). PI-PBC has a better performance than other two controllers in all considered scenarios. Simulation results have conducted through MATLAB/SIMULINK software by using the SimPowerSystem toolbox. © 2019 Elsevier B.V. |
publishDate |
2019 |
dc.date.issued.none.fl_str_mv |
2019 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:32:46Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:32:46Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasversion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
Electric Power Systems Research; Vol. 175 |
dc.identifier.issn.none.fl_str_mv |
03787796 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/9017 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.epsr.2019.105885 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
57191493648 56919564100 36449223500 |
identifier_str_mv |
Electric Power Systems Research; Vol. 175 03787796 10.1016/j.epsr.2019.105885 Universidad Tecnológica de Bolívar Repositorio UTB 57191493648 56919564100 36449223500 |
url |
https://hdl.handle.net/20.500.12585/9017 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_16ec |
eu_rights_str_mv |
restrictedAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Ltd |
publisher.none.fl_str_mv |
Elsevier Ltd |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85067625974&doi=10.1016%2fj.epsr.2019.105885&partnerID=40&md5=2d6229ffff15e246faa086da2f29e191 |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/9017/1/MiniProdInv.png |
bitstream.checksum.fl_str_mv |
0cb0f101a8d16897fb46fc914d3d7043 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021642476584960 |
spelling |
2020-03-26T16:32:46Z2020-03-26T16:32:46Z2019Electric Power Systems Research; Vol. 17503787796https://hdl.handle.net/20.500.12585/901710.1016/j.epsr.2019.105885Universidad Tecnológica de BolívarRepositorio UTB571914936485691956410036449223500This paper proposes a direct power control for electrical energy storage systems (EESS) in ac microgrids. This strategy allows managing instantaneous active and reactive power without using a conventional inner-loop current regulator and without a phase-locked loop, increasing the reliability of the system while reducing investment costs. PI passivity-based control (PI-PBC) is selected to control the direct power model of EESS. This is because their models exhibit a port-Hamiltonian formulation in open-loop, and PI-PBC exploits this formulation to design a PI controller, which guarantees global asymptotically stability in closed-loop in the sense of Lyapunov. Simulations tested the proposed model in a microgrid and compared with conventional vector oriented controls in a dq reference frame and a direct power model controlled via feedback linearization (FL). PI-PBC has a better performance than other two controllers in all considered scenarios. Simulation results have conducted through MATLAB/SIMULINK software by using the SimPowerSystem toolbox. © 2019 Elsevier B.V.Departamento Administrativo de Ciencia, Tecnología e Innovación, COLCIENCIAS Department of Science, Information Technology and Innovation, Queensland GovernmentThis work was partially supported by the National Scholarship Program Doctorates of the Administrative Department of Science, Technology and Innovation of Colombia (COLCIENCIAS), by calling contest 727-2015.Recurso electrónicoapplication/pdfengElsevier Ltdhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85067625974&doi=10.1016%2fj.epsr.2019.105885&partnerID=40&md5=2d6229ffff15e246faa086da2f29e191Direct power control of electrical energy storage systems: A passivity-based PI approachinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1A low-voltage microgridDirect power modelElectrical energy storage systemPI passivity-based controlPort-Hamiltonian formulationControllersEnergy storageFeedback linearizationHamiltoniansInvestmentsMATLABPower controlElectrical energy storage systemsLow voltage microgridPassivity based controlPort hamiltoniansPower modelElectric power system controlGil-González, WalterMontoya O.D.Garces A.Akinyele, D., Rayudu, R., Review of energy storage technologies for sustainable power networks (2014) Sustain. Energy Technol. Assess., 8, pp. 74-91Parra, D., Swierczynski, M., Stroe, D.I., Norman, S.A., Abdon, A., Worlitschek, J., O'Doherty, T., Zhang, X., An interdisciplinary review of energy storage for communities: challenges and perspectives (2017) Renew. Sustain. Energy Rev., 79, pp. 730-749Zakeri, B., Syri, S., Electrical energy storage systems: A comparative life cycle cost analysis (2015) Renew. Sustain. Energy Rev., 42, pp. 569-596Montoya, O.D., Gil-González, W., Garcés, A., Escobar, A., Grisales, L.F., Nonlinear control for battery energy storage systems in power grids (2018) 2018 IEEE Green Technologies Conference (GreenTech), pp. 65-70Gil-González, Montoya, O.D., Active and reactive power conditioning using SMES devices with PMW-CSC: a feedback nonlinear control approach (2019) Ain Shams Eng. J.Planas, E., Andreu, J., Gárate, J.I., de Alegría, I.M., Ibarra, E., AC and DC technology in microgrids: a review (2015) Renew. Sustain. Energy Rev., 43, pp. 726-749Montoya, O.D., Gil-González, W., Garces, A., Distributed energy resources integration in single-phase microgrids: an application of IDA-PBC and PI-PBC approaches (2019) Int. J. Electr. Power Energy Syst., 112, pp. 221-231Aly, M.M., Abdel-Akher, M., Said, S.M., Senjyu, T., A developed control strategy for mitigating wind power generation transients using superconducting magnetic energy storage with reactive power support (2016) Int. J. Electr. Power Energy Syst., 83, pp. 485-494Gil-González, W., Montoya, Danilo, O., Passivity-based PI control of a SMES system to support power in electrical grids: a bilinear approach (2018) J. Energy Storage, 18, pp. 459-466. , http://www.sciencedirect.com/science/article/pii/S2352152X18300483Rahim, A., Nowicki, E., Supercapacitor energy storage system for fault ride-through of a dfig wind generation system (2012) Energy Convers. Manag., 59, pp. 96-102Ortega, A., Milano, F., Generalized model of VSC-based energy storage systems for transient stability analysis (2016) IEEE Trans. Power Syst., 31 (5), pp. 3369-3380Shi, J., Tang, Y., Ren, L., Li, J., Cheng, S., Discretization-based decoupled state-feedback control for current source power conditioning system of SMES (2008) IEEE Trans. Power Deliv., 23 (4), pp. 2097-2104Shi, J., Zhang, L., Gong, K., Liu, Y., Zhou, A., Zhou, X., Tang, Y., Li, J., Improved discretization-based decoupled feedback control for a series-connected converter of SCC (2016) IEEE Trans. Appl. Supercond., 26 (7), pp. 1-6Ali, M.H., Park, M., Yu, I.K., Murata, T., Tamura, J., Improvement of wind-generator stability by fuzzy-logic-controlled smes (2009) IEEE Trans. Ind. Appl., 45 (3), pp. 1045-1051Mohammedi, M., Kraa, O., Becherif, M., Aboubou, A., Ayad, M., Bahri, M., Fuzzy logic and passivity-based controller applied to electric vehicle using fuel cell and supercapacitors hybrid source (2014) Energy Proc., 50, pp. 619-626Wang, S., Jin, J., Design and analysis of a fuzzy logic controlled smes system (2014) IEEE Trans. Appl. Supercond., 24 (5), pp. 1-5Nguyen, T.T., Yoo, H.J., Kim, H.M., Applying model predictive control to SMES system in microgrids for eddy current losses reduction (2016) IEEE Trans. Appl. Supercond., 26 (4), pp. 1-5Shi, J., Tang, Y., Yang, K., Chen, L., Ren, L., Li, J., Cheng, S., SMES based dynamic voltage restorer for voltage fluctuations compensation (2010) IEEE Trans. Appl. Supercond., 20 (3), pp. 1360-1364Gil-González, W.J., Garcés, A., Escobar, A., A generalized model and control for supermagnetic and supercapacitor energy storage (2017) Ingeniería y Ciencia, 13 (26), pp. 147-171Montoya, O.D., Gil-González, W., Garces, A., Control for EESS in three-phase microgrids under time-domain reference frame via PBC theory (2019) IEEE Trans. Circuits Syst. II, p. 1Montoya, O.D., Gil-González, W., Serra, F., PBC approach for SMES devices in electric distribution networks (2018) IEEE Trans. Circuits Syst. II, 65 (12), pp. 2003-2007Lin, X., Lei, Y., Coordinated control strategies for SMES-battery hybrid energy storage systems (2017) IEEE Access, 5, pp. 23452-23465Hou, R., Song, H., Nguyen, T.-T., Qu, Y., Kim, H.-M., Robustness improvement of superconducting magnetic energy storage system in microgrids using an energy shaping passivity-based control strategy (2017) Energies, 10 (5), p. 671Leon, A.E., Mauricio, J.M., Solsona, J.A., Gomez-Exposito, A., Adaptive control strategy for VSC-based systems under unbalanced network conditions (2010) IEEE Trans. Smart Grid, 1 (3), pp. 311-319Dong, D., Wen, B., Boroyevich, D., Mattavelli, P., Xue, Y., Analysis of phase-locked loop low-frequency stability in three-phase grid-connected power converters considering impedance interactions (2015) IEEE Trans. Ind. Electron., 62 (1), pp. 310-321Gil-González, W., Montoya, O.D., Garces, A., Direct power control for VS-C-HVDC systems: an application of the global tracking passivity-based PI approach (2019) Int. J. Electr. Power Energy Syst., 110, pp. 588-597Cisneros, R., Pirro, M., Bergna, G., Ortega, R., Ippoliti, G., Molinas, M., Global tracking passivity-based pi control of bilinear systems: application to the interleaved boost and modular multilevel converters (2015) Control Eng. Pract., 43, pp. 109-119Montoya, R.C., PI Passivity-Based Control: Application to Physical Systems, Ph.D. Thesis (2016), Université Paris-SaclayPerko, L., (2013) Differential Equations and Dynamical Systems, 7. , Springer Science & Business MediaMontoya, O.D., Garcés, A., Serra, F.M., DERs integration in microgrids using VSCs via proportional feedback linearization control: supercapacitors and distributed generators (2018) J. Energy Storage, 16, pp. 250-258. , http://www.sciencedirect.com/science/article/pii/S2352152X17303912Xu, Y., Ren, L., Zhang, Z., Tang, Y., Shi, J., Xu, C., Li, J., Liu, H., Analysis of the loss and thermal characteristics of a SMES (Superconducting Magnetic Energy Storage) magnet with three practical operating conditions (2018) Energy, 143, pp. 372-384, pp. 1-16. , IEEE Standard for Interconnecting Distributed Resources with Electric Power Systems – Amendment 1, IEEE Std 1547a-2014 (Amendment to IEEE Std 1547-2003), 2014Golestan, S., Guerrero, J.M., Vasquez, J.C., Three-phase PLLs: a review of recent advances (2017) IEEE Trans. Power Electron., 32 (3), pp. 1894-1907Freijedo, F.D., Doval-Gandoy, J., Lopez, O., Acha, E., Tuning of phase-locked loops for power converters under distorted utility conditions (2009) IEEE Trans. Ind. Appl., 45 (6), pp. 2039-2047http://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9017/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9017oai:repositorio.utb.edu.co:20.500.12585/90172023-05-26 10:22:34.086Repositorio Institucional UTBrepositorioutb@utb.edu.co |