Power Flow in Bipolar DC Distribution Networks Considering Current Limits

Power electronics converters are equipped with current controls that protect the converter from over-currents. This protection introduces non-differentiable equations into the power flow problem. The conventional Newton's method is not suitable in that conditions. This letter proposes a fixed-p...

Full description

Autores:
Garcés, Alejandro
Montoya, Oscar Danilo
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12310
Acceso en línea:
https://hdl.handle.net/20.500.12585/12310
Palabra clave:
Dc grids
Newton's method
Numerical methods
Power flow
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_a26848d96378460aa1fb14b5a5f4a10e
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12310
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Power Flow in Bipolar DC Distribution Networks Considering Current Limits
title Power Flow in Bipolar DC Distribution Networks Considering Current Limits
spellingShingle Power Flow in Bipolar DC Distribution Networks Considering Current Limits
Dc grids
Newton's method
Numerical methods
Power flow
title_short Power Flow in Bipolar DC Distribution Networks Considering Current Limits
title_full Power Flow in Bipolar DC Distribution Networks Considering Current Limits
title_fullStr Power Flow in Bipolar DC Distribution Networks Considering Current Limits
title_full_unstemmed Power Flow in Bipolar DC Distribution Networks Considering Current Limits
title_sort Power Flow in Bipolar DC Distribution Networks Considering Current Limits
dc.creator.fl_str_mv Garcés, Alejandro
Montoya, Oscar Danilo
dc.contributor.author.none.fl_str_mv Garcés, Alejandro
Montoya, Oscar Danilo
dc.subject.keywords.spa.fl_str_mv Dc grids
Newton's method
Numerical methods
Power flow
topic Dc grids
Newton's method
Numerical methods
Power flow
description Power electronics converters are equipped with current controls that protect the converter from over-currents. This protection introduces non-differentiable equations into the power flow problem. The conventional Newton's method is not suitable in that conditions. This letter proposes a fixed-point iteration to overcome this difficulty. The technique is derivative-free, and hence, it can naturally include the saturation given by the converters' current protection. Exact conditions for convergence and uniqueness of the solution are demonstrated using Banach's fixed point theorem. Numerical experiments in Matlab complement the analysis
publishDate 2022
dc.date.issued.none.fl_str_mv 2022-09
dc.date.accessioned.none.fl_str_mv 2023-07-21T16:16:51Z
dc.date.available.none.fl_str_mv 2023-07-21T16:16:51Z
dc.date.submitted.none.fl_str_mv 2023-07
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
status_str draft
dc.identifier.citation.spa.fl_str_mv A. Garcés, O. D. Montoya and W. Gil-González, "Power Flow in Bipolar DC Distribution Networks Considering Current Limits," in IEEE Transactions on Power Systems, vol. 37, no. 5, pp. 4098-4101, Sept. 2022, doi: 10.1109/TPWRS.2022.3181851.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12310
dc.identifier.doi.none.fl_str_mv 10.1109/TPWRS.2022.3181851.
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv A. Garcés, O. D. Montoya and W. Gil-González, "Power Flow in Bipolar DC Distribution Networks Considering Current Limits," in IEEE Transactions on Power Systems, vol. 37, no. 5, pp. 4098-4101, Sept. 2022, doi: 10.1109/TPWRS.2022.3181851.
10.1109/TPWRS.2022.3181851.
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12310
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 4 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv IEEE Transactions on Power Systems - Vol. 37 No 5 (2022)
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12310/1/Power%20Flow%20in%20Bipolar%20DC%20Distribution%20Networks%20Considering%20Current%20Limits.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12310/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12310/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12310/4/Power%20Flow%20in%20Bipolar%20DC%20Distribution%20Networks%20Considering%20Current%20Limits.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12310/5/Power%20Flow%20in%20Bipolar%20DC%20Distribution%20Networks%20Considering%20Current%20Limits.pdf.jpg
bitstream.checksum.fl_str_mv 3c92c3a8d4079a20e6d1d46124645141
4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
eaa40207a10375714e0e0a2a84093d4d
e40236456acfdad0761d1bcfba6efe98
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021803790565376
spelling Garcés, Alejandro1f6fb709-fba4-4fc8-9381-be1f0ca81b82Montoya, Oscar Danilo9fa8a75a-58fa-436d-a6e2-d80f718a4ea82023-07-21T16:16:51Z2023-07-21T16:16:51Z2022-092023-07A. Garcés, O. D. Montoya and W. Gil-González, "Power Flow in Bipolar DC Distribution Networks Considering Current Limits," in IEEE Transactions on Power Systems, vol. 37, no. 5, pp. 4098-4101, Sept. 2022, doi: 10.1109/TPWRS.2022.3181851.https://hdl.handle.net/20.500.12585/1231010.1109/TPWRS.2022.3181851.Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarPower electronics converters are equipped with current controls that protect the converter from over-currents. This protection introduces non-differentiable equations into the power flow problem. The conventional Newton's method is not suitable in that conditions. This letter proposes a fixed-point iteration to overcome this difficulty. The technique is derivative-free, and hence, it can naturally include the saturation given by the converters' current protection. Exact conditions for convergence and uniqueness of the solution are demonstrated using Banach's fixed point theorem. Numerical experiments in Matlab complement the analysis4 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2IEEE Transactions on Power Systems - Vol. 37 No 5 (2022)Power Flow in Bipolar DC Distribution Networks Considering Current Limitsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Dc gridsNewton's methodNumerical methodsPower flowCartagena de IndiasBarabanov, N., Ortega, R., Griñó, R., Polyak, B. On Existence and Stability of Equilibria of Linear Time-Invariant Systems with Constant Power Loads (2016) IEEE Transactions on Circuits and Systems I: Regular Papers, 63 (1), art. no. 7328761, pp. 114-121. Cited 81 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=8919 doi: 10.1109/TCSI.2015.2497559Brust, J.J., Anitescu, M. Convergence Analysis of Fixed Point Chance Constrained Optimal Power Flow Problems (2022) IEEE Transactions on Power Systems, 37 (6), pp. 4191-4201. https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=59 doi: 10.1109/TPWRS.2022.3146873Ertugrul, N., Abbott, D. DC is the Future [Point of View] (Open Access) (2020) Proceedings of the IEEE, 108 (5), art. no. 9080680, pp. 615-624. Cited 38 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5 doi: 10.1109/JPROC.2020.2982707Garces, A. On the convergence of Newton's method in power flow studies for dc microgrids (Open Access) (2018) IEEE Transactions on Power Systems, 33 (5), art. no. 8327530, pp. 5770-5777. Cited 120 times. doi: 10.1109/TPWRS.2018.2820430Kerting, W.H. Radial distribution test feeders IEEE distribution planning working group report (Open Access) (1991) IEEE Transactions on Power Systems, 6 (3), pp. 975-985. Cited 919 times. doi: 10.1109/59.119237Li, J., Liu, F., Wang, Z., Low, S.H., Mei, S. Optimal Power Flow in Stand-Alone DC Microgrids (Open Access) (2018) IEEE Transactions on Power Systems, 33 (5), art. no. 8279503, pp. 5496-5506. Cited 113 times. doi: 10.1109/TPWRS.2018.2801280Loomis, L.H., Sternberg, S. Advanced calculus, revised edition (2014) Advanced Calculus, Revised Edition, pp. 1-580. Cited 17 times. http://www.worldscientific.com/worldscibooks/10.1142/9095#t=toc ISBN: 978-981458394-7; 978-981458392-3 doi: 10.1142/9095Simpson-Porco, J.W., Dörfler, F., Bullo, F. On Resistive Networks of Constant-Power Devices (Open Access) (2015) IEEE Transactions on Circuits and Systems II: Express Briefs, 62 (8), art. no. 7108029, pp. 811-815. Cited 60 times. http://www.ieee-cas.org doi: 10.1109/TCSII.2015.2433537Taheri, S., Kekatos, V. Power Flow Solvers for Direct Current Networks (Open Access) (2020) IEEE Transactions on Smart Grid, 11 (1), art. no. 8758349, pp. 634-643. Cited 16 times. https://ieeexplore.ieee.org/servlet/opac?punumber=5165411 doi: 10.1109/TSG.2019.2927455Gil-González, W. (2022) Power flow in bipolar DC distribution networks MATLABCentral File Exchange. Retrieved Jun. 29, 2022, [Online]. https://www.mathworks.com/matlabcentral/fileexchange/97407-power-flow-in-bipolar-dc-distribution-networkshttp://purl.org/coar/resource_type/c_2df8fbb1ORIGINALPower Flow in Bipolar DC Distribution Networks Considering Current Limits.pdfPower Flow in Bipolar DC Distribution Networks Considering Current Limits.pdfapplication/pdf110630https://repositorio.utb.edu.co/bitstream/20.500.12585/12310/1/Power%20Flow%20in%20Bipolar%20DC%20Distribution%20Networks%20Considering%20Current%20Limits.pdf3c92c3a8d4079a20e6d1d46124645141MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12310/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12310/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTPower Flow in Bipolar DC Distribution Networks Considering Current Limits.pdf.txtPower Flow in Bipolar DC Distribution Networks Considering Current Limits.pdf.txtExtracted texttext/plain3330https://repositorio.utb.edu.co/bitstream/20.500.12585/12310/4/Power%20Flow%20in%20Bipolar%20DC%20Distribution%20Networks%20Considering%20Current%20Limits.pdf.txteaa40207a10375714e0e0a2a84093d4dMD54THUMBNAILPower Flow in Bipolar DC Distribution Networks Considering Current Limits.pdf.jpgPower Flow in Bipolar DC Distribution Networks Considering Current Limits.pdf.jpgGenerated Thumbnailimage/jpeg7582https://repositorio.utb.edu.co/bitstream/20.500.12585/12310/5/Power%20Flow%20in%20Bipolar%20DC%20Distribution%20Networks%20Considering%20Current%20Limits.pdf.jpge40236456acfdad0761d1bcfba6efe98MD5520.500.12585/12310oai:repositorio.utb.edu.co:20.500.12585/123102023-07-22 00:17:33.99Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=