Power Flow in Bipolar DC Distribution Networks Considering Current Limits
Power electronics converters are equipped with current controls that protect the converter from over-currents. This protection introduces non-differentiable equations into the power flow problem. The conventional Newton's method is not suitable in that conditions. This letter proposes a fixed-p...
- Autores:
-
Garcés, Alejandro
Montoya, Oscar Danilo
- Tipo de recurso:
- Fecha de publicación:
- 2022
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/12310
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/12310
- Palabra clave:
- Dc grids
Newton's method
Numerical methods
Power flow
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_a26848d96378460aa1fb14b5a5f4a10e |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/12310 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Power Flow in Bipolar DC Distribution Networks Considering Current Limits |
title |
Power Flow in Bipolar DC Distribution Networks Considering Current Limits |
spellingShingle |
Power Flow in Bipolar DC Distribution Networks Considering Current Limits Dc grids Newton's method Numerical methods Power flow |
title_short |
Power Flow in Bipolar DC Distribution Networks Considering Current Limits |
title_full |
Power Flow in Bipolar DC Distribution Networks Considering Current Limits |
title_fullStr |
Power Flow in Bipolar DC Distribution Networks Considering Current Limits |
title_full_unstemmed |
Power Flow in Bipolar DC Distribution Networks Considering Current Limits |
title_sort |
Power Flow in Bipolar DC Distribution Networks Considering Current Limits |
dc.creator.fl_str_mv |
Garcés, Alejandro Montoya, Oscar Danilo |
dc.contributor.author.none.fl_str_mv |
Garcés, Alejandro Montoya, Oscar Danilo |
dc.subject.keywords.spa.fl_str_mv |
Dc grids Newton's method Numerical methods Power flow |
topic |
Dc grids Newton's method Numerical methods Power flow |
description |
Power electronics converters are equipped with current controls that protect the converter from over-currents. This protection introduces non-differentiable equations into the power flow problem. The conventional Newton's method is not suitable in that conditions. This letter proposes a fixed-point iteration to overcome this difficulty. The technique is derivative-free, and hence, it can naturally include the saturation given by the converters' current protection. Exact conditions for convergence and uniqueness of the solution are demonstrated using Banach's fixed point theorem. Numerical experiments in Matlab complement the analysis |
publishDate |
2022 |
dc.date.issued.none.fl_str_mv |
2022-09 |
dc.date.accessioned.none.fl_str_mv |
2023-07-21T16:16:51Z |
dc.date.available.none.fl_str_mv |
2023-07-21T16:16:51Z |
dc.date.submitted.none.fl_str_mv |
2023-07 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasversion.spa.fl_str_mv |
info:eu-repo/semantics/draft |
dc.type.spa.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
status_str |
draft |
dc.identifier.citation.spa.fl_str_mv |
A. Garcés, O. D. Montoya and W. Gil-González, "Power Flow in Bipolar DC Distribution Networks Considering Current Limits," in IEEE Transactions on Power Systems, vol. 37, no. 5, pp. 4098-4101, Sept. 2022, doi: 10.1109/TPWRS.2022.3181851. |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/12310 |
dc.identifier.doi.none.fl_str_mv |
10.1109/TPWRS.2022.3181851. |
dc.identifier.instname.spa.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Universidad Tecnológica de Bolívar |
identifier_str_mv |
A. Garcés, O. D. Montoya and W. Gil-González, "Power Flow in Bipolar DC Distribution Networks Considering Current Limits," in IEEE Transactions on Power Systems, vol. 37, no. 5, pp. 4098-4101, Sept. 2022, doi: 10.1109/TPWRS.2022.3181851. 10.1109/TPWRS.2022.3181851. Universidad Tecnológica de Bolívar Repositorio Universidad Tecnológica de Bolívar |
url |
https://hdl.handle.net/20.500.12585/12310 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.cc.*.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
4 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.place.spa.fl_str_mv |
Cartagena de Indias |
dc.source.spa.fl_str_mv |
IEEE Transactions on Power Systems - Vol. 37 No 5 (2022) |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/12310/1/Power%20Flow%20in%20Bipolar%20DC%20Distribution%20Networks%20Considering%20Current%20Limits.pdf https://repositorio.utb.edu.co/bitstream/20.500.12585/12310/2/license_rdf https://repositorio.utb.edu.co/bitstream/20.500.12585/12310/3/license.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/12310/4/Power%20Flow%20in%20Bipolar%20DC%20Distribution%20Networks%20Considering%20Current%20Limits.pdf.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/12310/5/Power%20Flow%20in%20Bipolar%20DC%20Distribution%20Networks%20Considering%20Current%20Limits.pdf.jpg |
bitstream.checksum.fl_str_mv |
3c92c3a8d4079a20e6d1d46124645141 4460e5956bc1d1639be9ae6146a50347 e20ad307a1c5f3f25af9304a7a7c86b6 eaa40207a10375714e0e0a2a84093d4d e40236456acfdad0761d1bcfba6efe98 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021803790565376 |
spelling |
Garcés, Alejandro1f6fb709-fba4-4fc8-9381-be1f0ca81b82Montoya, Oscar Danilo9fa8a75a-58fa-436d-a6e2-d80f718a4ea82023-07-21T16:16:51Z2023-07-21T16:16:51Z2022-092023-07A. Garcés, O. D. Montoya and W. Gil-González, "Power Flow in Bipolar DC Distribution Networks Considering Current Limits," in IEEE Transactions on Power Systems, vol. 37, no. 5, pp. 4098-4101, Sept. 2022, doi: 10.1109/TPWRS.2022.3181851.https://hdl.handle.net/20.500.12585/1231010.1109/TPWRS.2022.3181851.Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarPower electronics converters are equipped with current controls that protect the converter from over-currents. This protection introduces non-differentiable equations into the power flow problem. The conventional Newton's method is not suitable in that conditions. This letter proposes a fixed-point iteration to overcome this difficulty. The technique is derivative-free, and hence, it can naturally include the saturation given by the converters' current protection. Exact conditions for convergence and uniqueness of the solution are demonstrated using Banach's fixed point theorem. Numerical experiments in Matlab complement the analysis4 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2IEEE Transactions on Power Systems - Vol. 37 No 5 (2022)Power Flow in Bipolar DC Distribution Networks Considering Current Limitsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Dc gridsNewton's methodNumerical methodsPower flowCartagena de IndiasBarabanov, N., Ortega, R., Griñó, R., Polyak, B. On Existence and Stability of Equilibria of Linear Time-Invariant Systems with Constant Power Loads (2016) IEEE Transactions on Circuits and Systems I: Regular Papers, 63 (1), art. no. 7328761, pp. 114-121. Cited 81 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=8919 doi: 10.1109/TCSI.2015.2497559Brust, J.J., Anitescu, M. Convergence Analysis of Fixed Point Chance Constrained Optimal Power Flow Problems (2022) IEEE Transactions on Power Systems, 37 (6), pp. 4191-4201. https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=59 doi: 10.1109/TPWRS.2022.3146873Ertugrul, N., Abbott, D. DC is the Future [Point of View] (Open Access) (2020) Proceedings of the IEEE, 108 (5), art. no. 9080680, pp. 615-624. Cited 38 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5 doi: 10.1109/JPROC.2020.2982707Garces, A. On the convergence of Newton's method in power flow studies for dc microgrids (Open Access) (2018) IEEE Transactions on Power Systems, 33 (5), art. no. 8327530, pp. 5770-5777. Cited 120 times. doi: 10.1109/TPWRS.2018.2820430Kerting, W.H. Radial distribution test feeders IEEE distribution planning working group report (Open Access) (1991) IEEE Transactions on Power Systems, 6 (3), pp. 975-985. Cited 919 times. doi: 10.1109/59.119237Li, J., Liu, F., Wang, Z., Low, S.H., Mei, S. Optimal Power Flow in Stand-Alone DC Microgrids (Open Access) (2018) IEEE Transactions on Power Systems, 33 (5), art. no. 8279503, pp. 5496-5506. Cited 113 times. doi: 10.1109/TPWRS.2018.2801280Loomis, L.H., Sternberg, S. Advanced calculus, revised edition (2014) Advanced Calculus, Revised Edition, pp. 1-580. Cited 17 times. http://www.worldscientific.com/worldscibooks/10.1142/9095#t=toc ISBN: 978-981458394-7; 978-981458392-3 doi: 10.1142/9095Simpson-Porco, J.W., Dörfler, F., Bullo, F. On Resistive Networks of Constant-Power Devices (Open Access) (2015) IEEE Transactions on Circuits and Systems II: Express Briefs, 62 (8), art. no. 7108029, pp. 811-815. Cited 60 times. http://www.ieee-cas.org doi: 10.1109/TCSII.2015.2433537Taheri, S., Kekatos, V. Power Flow Solvers for Direct Current Networks (Open Access) (2020) IEEE Transactions on Smart Grid, 11 (1), art. no. 8758349, pp. 634-643. Cited 16 times. https://ieeexplore.ieee.org/servlet/opac?punumber=5165411 doi: 10.1109/TSG.2019.2927455Gil-González, W. (2022) Power flow in bipolar DC distribution networks MATLABCentral File Exchange. Retrieved Jun. 29, 2022, [Online]. https://www.mathworks.com/matlabcentral/fileexchange/97407-power-flow-in-bipolar-dc-distribution-networkshttp://purl.org/coar/resource_type/c_2df8fbb1ORIGINALPower Flow in Bipolar DC Distribution Networks Considering Current Limits.pdfPower Flow in Bipolar DC Distribution Networks Considering Current Limits.pdfapplication/pdf110630https://repositorio.utb.edu.co/bitstream/20.500.12585/12310/1/Power%20Flow%20in%20Bipolar%20DC%20Distribution%20Networks%20Considering%20Current%20Limits.pdf3c92c3a8d4079a20e6d1d46124645141MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12310/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12310/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTPower Flow in Bipolar DC Distribution Networks Considering Current Limits.pdf.txtPower Flow in Bipolar DC Distribution Networks Considering Current Limits.pdf.txtExtracted texttext/plain3330https://repositorio.utb.edu.co/bitstream/20.500.12585/12310/4/Power%20Flow%20in%20Bipolar%20DC%20Distribution%20Networks%20Considering%20Current%20Limits.pdf.txteaa40207a10375714e0e0a2a84093d4dMD54THUMBNAILPower Flow in Bipolar DC Distribution Networks Considering Current Limits.pdf.jpgPower Flow in Bipolar DC Distribution Networks Considering Current Limits.pdf.jpgGenerated Thumbnailimage/jpeg7582https://repositorio.utb.edu.co/bitstream/20.500.12585/12310/5/Power%20Flow%20in%20Bipolar%20DC%20Distribution%20Networks%20Considering%20Current%20Limits.pdf.jpge40236456acfdad0761d1bcfba6efe98MD5520.500.12585/12310oai:repositorio.utb.edu.co:20.500.12585/123102023-07-22 00:17:33.99Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo= |