Time-Domain Analysis for Current Control in Single-Phase Distribution Networks Using SMES Devices With PWM-CSCs

This paper presents a time-domain analysis for current control in single-phase distribution networks using superconducting magnetic energy storage devices connected through pulse-width modulated current source converters. The control law is designed through a combination of the classical feedback li...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2018
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/8854
Acceso en línea:
https://hdl.handle.net/20.500.12585/8854
Palabra clave:
Current control
Exact feedback linearization
Single-phase distribution networks
Stability analysis
Superconducting magnetic energy storage devices
Differential equations
Dynamical systems
Electric current control
Electric energy storage
Feedback linearization
Hamiltonians
Magnetic storage
MATLAB
Pulse width modulation
Superconducting magnets
Control methodology
Exact feedback linearization
Hamiltonian structures
Implementation cost
Pulse-width-modulated
Single phase
Stability analysis
Superconducting magnetic energy storages
Time domain analysis
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_a19cea8ea2c6e1c49a7d7a5d9fb91667
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/8854
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Time-Domain Analysis for Current Control in Single-Phase Distribution Networks Using SMES Devices With PWM-CSCs
title Time-Domain Analysis for Current Control in Single-Phase Distribution Networks Using SMES Devices With PWM-CSCs
spellingShingle Time-Domain Analysis for Current Control in Single-Phase Distribution Networks Using SMES Devices With PWM-CSCs
Current control
Exact feedback linearization
Single-phase distribution networks
Stability analysis
Superconducting magnetic energy storage devices
Differential equations
Dynamical systems
Electric current control
Electric energy storage
Feedback linearization
Hamiltonians
Magnetic storage
MATLAB
Pulse width modulation
Superconducting magnets
Control methodology
Exact feedback linearization
Hamiltonian structures
Implementation cost
Pulse-width-modulated
Single phase
Stability analysis
Superconducting magnetic energy storages
Time domain analysis
title_short Time-Domain Analysis for Current Control in Single-Phase Distribution Networks Using SMES Devices With PWM-CSCs
title_full Time-Domain Analysis for Current Control in Single-Phase Distribution Networks Using SMES Devices With PWM-CSCs
title_fullStr Time-Domain Analysis for Current Control in Single-Phase Distribution Networks Using SMES Devices With PWM-CSCs
title_full_unstemmed Time-Domain Analysis for Current Control in Single-Phase Distribution Networks Using SMES Devices With PWM-CSCs
title_sort Time-Domain Analysis for Current Control in Single-Phase Distribution Networks Using SMES Devices With PWM-CSCs
dc.subject.keywords.none.fl_str_mv Current control
Exact feedback linearization
Single-phase distribution networks
Stability analysis
Superconducting magnetic energy storage devices
Differential equations
Dynamical systems
Electric current control
Electric energy storage
Feedback linearization
Hamiltonians
Magnetic storage
MATLAB
Pulse width modulation
Superconducting magnets
Control methodology
Exact feedback linearization
Hamiltonian structures
Implementation cost
Pulse-width-modulated
Single phase
Stability analysis
Superconducting magnetic energy storages
Time domain analysis
topic Current control
Exact feedback linearization
Single-phase distribution networks
Stability analysis
Superconducting magnetic energy storage devices
Differential equations
Dynamical systems
Electric current control
Electric energy storage
Feedback linearization
Hamiltonians
Magnetic storage
MATLAB
Pulse width modulation
Superconducting magnets
Control methodology
Exact feedback linearization
Hamiltonian structures
Implementation cost
Pulse-width-modulated
Single phase
Stability analysis
Superconducting magnetic energy storages
Time domain analysis
description This paper presents a time-domain analysis for current control in single-phase distribution networks using superconducting magnetic energy storage devices connected through pulse-width modulated current source converters. The control law is designed through a combination of the classical feedback linearization control technique and the intrinsic Hamiltonian structure of the system. The stability analysis of the dynamical system is done through the temporal solution of the differential equations that represent the closed-loop dynamical system. The proposed controller does not require of the single phase-phase locked loop which does a strategy very attractive due to that avoids all the problems that these elements contain, increase the reliability of the system and reducing implementation costs. The effectiveness and the robustness of the proposed current control methodology are tested in a low-voltage single-phase distribution network. All simulation scenarios are conducted in MATLAB/ODE environment under time-domain reference frame. © 2019, © 2019 Taylor & Francis Group, LLC.
publishDate 2018
dc.date.issued.none.fl_str_mv 2018
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:32:30Z
dc.date.available.none.fl_str_mv 2020-03-26T16:32:30Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.hasVersion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Electric Power Components and Systems; Vol. 46, Núm. 18; pp. 1938-1947
dc.identifier.issn.none.fl_str_mv 15325008
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/8854
dc.identifier.doi.none.fl_str_mv 10.1080/15325008.2018.1531325
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 56919564100
57191493648
identifier_str_mv Electric Power Components and Systems; Vol. 46, Núm. 18; pp. 1938-1947
15325008
10.1080/15325008.2018.1531325
Universidad Tecnológica de Bolívar
Repositorio UTB
56919564100
57191493648
url https://hdl.handle.net/20.500.12585/8854
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessRights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Taylor and Francis Inc.
publisher.none.fl_str_mv Taylor and Francis Inc.
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85060348555&doi=10.1080%2f15325008.2018.1531325&partnerID=40&md5=6446403b2a4a9a83cac2ae273335f35f
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/8854/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021636065591296
spelling 2020-03-26T16:32:30Z2020-03-26T16:32:30Z2018Electric Power Components and Systems; Vol. 46, Núm. 18; pp. 1938-194715325008https://hdl.handle.net/20.500.12585/885410.1080/15325008.2018.1531325Universidad Tecnológica de BolívarRepositorio UTB5691956410057191493648This paper presents a time-domain analysis for current control in single-phase distribution networks using superconducting magnetic energy storage devices connected through pulse-width modulated current source converters. The control law is designed through a combination of the classical feedback linearization control technique and the intrinsic Hamiltonian structure of the system. The stability analysis of the dynamical system is done through the temporal solution of the differential equations that represent the closed-loop dynamical system. The proposed controller does not require of the single phase-phase locked loop which does a strategy very attractive due to that avoids all the problems that these elements contain, increase the reliability of the system and reducing implementation costs. The effectiveness and the robustness of the proposed current control methodology are tested in a low-voltage single-phase distribution network. All simulation scenarios are conducted in MATLAB/ODE environment under time-domain reference frame. © 2019, © 2019 Taylor & Francis Group, LLC.Universidad Tecnológica de Pereira, UTP Departamento Administrativo de Ciencia, Tecnología e Innovación (COLCIENCIAS), COLCIENCIAS: 727-2015 Department of Science, Information Technology and Innovation, Queensland Government, DSITIThis work was partially supported by the National Scholarship Program Doctorates of the Administrative Department of Science, Technology and Innovation of Colombia (COLCIENCIAS), by calling contest 727-2015 and PhD program in Engineering of the Technological University of Pereira.Recurso electrónicoapplication/pdfengTaylor and Francis Inc.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85060348555&doi=10.1080%2f15325008.2018.1531325&partnerID=40&md5=6446403b2a4a9a83cac2ae273335f35fTime-Domain Analysis for Current Control in Single-Phase Distribution Networks Using SMES Devices With PWM-CSCsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Current controlExact feedback linearizationSingle-phase distribution networksStability analysisSuperconducting magnetic energy storage devicesDifferential equationsDynamical systemsElectric current controlElectric energy storageFeedback linearizationHamiltoniansMagnetic storageMATLABPulse width modulationSuperconducting magnetsControl methodologyExact feedback linearizationHamiltonian structuresImplementation costPulse-width-modulatedSingle phaseStability analysisSuperconducting magnetic energy storagesTime domain analysisMontoya O.D.Gil-González W.Ellabban, O., Abu-Rub, H., Blaabjerg, F., Renewable energy resources: Current status, future prospects and their enabling technology (2014) Renew. Sustain. Energy Rev, 39, pp. 748-764Amrouche, S.O., Rekioua, D., Rekioua, T., Bacha, S., Overview of energy storage in renewable energy systems (2016) Int. J. Hydrogen Energy, 41 (45), pp. 20914-20927Hussain, A., Arif, S.M., Aslam, M., Emerging renewable and sustainable energy technologies: State of the art (2017) Renew. Sustain. Energy Rev, 71, pp. 12-28Barma, M., Saidur, R., Rahman, S., Allouhi, A., Akash, B., Sait, S.M., A review on boilers energy use, energy savings, and emissions reductions (2017) Renew. Sustain. Energy Rev, 79, pp. 970-983Makky, A.A., Alaswad, A., Gibson, D., Olabi, A., Renewable energy scenario and environmental aspects of soil emission measurements (2017) Renew. Sustain. Energy Rev, 68, pp. 1157-1173Rocabert, J., Luna, A., Blaabjerg, F., Rodríguez, P., Control of power converters in AC microgrids (2012) IEEE Trans. Power Electron, 27 (11), pp. 4734-4749Zhang, G., Li, Z., Zhang, B., Halang, W.A., Power electronics converters: Past, present and future (2018) Renew. Sustain. Energy Rev, 81, pp. 2028-2044Parvini, Y., Vahidi, A., Fayazi, S.A., Heuristic versus optimal charging of supercapacitors, lithium-ion, and lead-acid batteries: An efficiency point of view (2017) IEEE Trans. Control Syst. Technol, PP (99), pp. 1-14Ortega, A., Milano, F., Generalized model of VSC-Based energy storage systems for transient stability analysis (2016) IEEE Trans. Power Syst, 31 (5), pp. 3369-3380Ortega, Á., Milano, F., Modeling, simulation, and comparison of control techniques for energy storage systems (2017) IEEE Trans. Power Syst, 32 (3), pp. 2445-2454Chen, X.Y., Integrated SMES technology for modern power system and future smart grid (2014) IEEE Trans. Appl. Superconduct, 24 (5), pp. 1-5Ali, M.H., Wu, B., Dougal, R.A., An overview of SMES applications in power and energy systems (2010) IEEE Trans. Sustain. Energy, 1 (1), pp. 38-47Shi, J., SMES based dynamic voltage restorer for voltage fluctuations compensation (2010) IEEE Trans. Appl. Superconduct, 20 (3), pp. 1360-1364Murray, D.B., Hayes, J.G., Cycle testing of supercapacitors for long-life robust applications (2015) IEEE Trans. Power Electron, 30 (5), pp. 2505-2516Rahim, A., Nowicki, E., Supercapacitor energy storage system for fault ride-through of a DFIG wind generation system (2012) Energy Convers. Manage, 59, pp. 96-102Kamh, M.Z., Iravani, R., Steady-state model and power-flow analysis of single-phase electronically coupled distributed energy resources (2012) IEEE Trans. Power Deliv, 27 (1), pp. 131-139Vitorino, M.A., Wang, R., Corrêa, M.B.D.R., Boroyevich, D., Compensation of dc-link oscillation in single-phase-to-single-phase VSC/CSC and power density comparison (2014) IEEE Trans. Ind. Appl, 50 (3), pp. 2021-2028Montoya, O.D., Gil-González, W., Garcés, A., Espinosa-Pérez, G., Indirect IDA-PBC for active and reactive power support in distribution networks using SMES systems with PWM-CSC (2018) J. Energy Storage, 17, pp. 261-271Amoozegar, D., DSTATCOM modelling for voltage stability with fuzzy logic PI current controller (2016) Int. J. Electr. Power Energy Syst, 76, pp. 129-135Elliman, R., Gould, C., Al-Tai, M., (2015), pp. 1-5. , Review of current and future electrical energy storage devices, 2015 50th International Universities Power Engineering Conference (UPEC), Stoke on Trent, UK: IEEE, SeptemberGil-González, W., Montoya, O.D., Passivity-based PI control of a SMES system to support power in electrical grids: A bilinear approach (2018) J. Energy Storage, 18, pp. 459-466Shi, J., Tang, Y., Ren, L., Li, J., Cheng, S., Discretization-based decoupled state-feedback control for current source power conditioning system of SMES (2008) IEEE Trans. Power Deliv, 23 (4), pp. 2097-2104Gil-González, W., Montoya, O.D., Garcés, A., Escobar-Mejía, A., (2017), pp. 145-150. , Supervisory LMI-based state-feedback control for current source power conditioning of SMES, 2017 Ninth Annual IEEE Green Technologies Conference (GreenTech), Denver, CO, USA: IEEE, MarchGil-González, W.J., Garcés, A., Escobar, A., A generalized model and control for supermagnetic and supercapacitor energy storage (2017) Ingeniería y Ciencia, 13 (26), pp. 147-171Montoya, O.D., Gil-González, W., Serra, F.M., PBC approach for SMES devices in electric distribution networks (2018) IEEE Trans. Circuits Syst. II: Express Briefs, p. 1de Jesús Hernández Hernández, R., Cárdenas, V., Espinosa-Pérez, G., (2016), pp. 283-288. , Development of a current source inverter for energy storage systems, 2016 13th International Conference on Power Electronics (CIEP), Guanajuato, Mexico: IEEE, JuneGil-González, W., Montoya, O.D., Garcés, A., Espinosa-Pérez, G., (2017), pp. 89-95. , IDA-passivity-based control for superconducting magnetic energy storage with PWM-CSC, 2017 Ninth Annual IEEE Green Technologies Conference (GreenTech), Denver, CO, USA: IEEE, MarchAtalla, E.S., Zhang, F., Balsara, P.T., Bellaouar, A., Ba, S., Kiasaleh, K., Time-domain analysis of passive mixer impedance: a switched-capacitor approach (2017) IEEE Trans. Circuits Syst. I Regul. Paper, 64 (2), pp. 347-359Zafari, A., Jazaeri, M., Conceptual design of an efficient unified shunt active power filter based on voltage and current source converters (2017) Energy, 119, pp. 911-925Liu, Y., Sun, Y., Su, M., Li, X., Ning, S., A single phase AC/DC/AC converter with unified ripple power decoupling (2017) IEEE Trans. Power Electron, PP (99), p. 1Han, H., Liu, Y., Sun, Y., Su, M., Xiong, W., Single-phase current source converter with power decoupling capability using a series-connected active buffer (2015) IET Power Electron, 8 (5), pp. 700-707Somkun, S., Chunkag, V., Unified unbalanced synchronous reference frame current control for single-phase grid-connected voltage-source converters (2016) IEEE Trans. Ind. Electron, 63 (9), pp. 5425-5436Monfared, M., Sanatkar, M., Golestan, S., Direct active and reactive power control of single-phase grid-tie converters (2012) IET Power Electron, 5 (8), pp. 1544-1550Serra, F.M., Angelo, C.H.D., Forchetti, D.G., Interconnection and damping assignment control of a three-phase front end converter (2014) Int. J. Electr. Power Energy Syst, 60, pp. 317-324Serra, F.M., Angelo, C.H.D., IDA-PBC controller design for grid connected front end converters under non-ideal grid conditions (2017) Electr. Power Syst. Res, 142, pp. 12-19Perko, L., (2013) Differential Equations and Dynamical Systems, Ser. Texts in Applied Mathematics, , https://books.google.com.co/books?id=VFnSBwAAQBAJ, New York: Springer,. AvailableHaddad, W., Chellaboina, V., (2011) Nonlinear Dynamical Systems and Control: A Lyapunov-Based Approach, , https://books.google.com.co/books?id=bUQN6Ph7YEIC, Princeton, NJ: Princeton University Press, and,. [Online]. AvailableKhalil, H., (2013) Nonlinear Systems, Series Always Learning, , https://books.google.com.co/books?id=VZ72nQEACAAJ, London, UK: Pearson Education, Limited,. [Online]. AvailableAbdelsalam, A.K., Massoud, A., Darwish, A., Ahmed, S., (2012), pp. 1398-1403. , Simplified generic on-line PWM technique for single phase grid connected current source inverters, Applied Power Electronics Conference and Exposition (APEC), 2012 Twenty-Seventh Annual IEEE, Orlando, FL, USA: IEEEhttp://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/8854/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/8854oai:repositorio.utb.edu.co:20.500.12585/88542021-02-02 12:57:40.598Repositorio Institucional UTBrepositorioutb@utb.edu.co