team UTB-NLP at finances 2023: financial targeted sentiment analysis using a phonestheme semantic approach

Sentiment analysis in the financial domain is a challenging task that plays a crucial role in understanding public opinion, monitoring market trends, and assessing the impact of news on economic agents. In this shared task, we address targeted sentiment analysis in the financial domain, focusing on...

Full description

Autores:
Cuadrado, Juan
Martinez, Elizabeth
Martinez-Santos, Juan Carlos
Puertas, Edwin
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12584
Acceso en línea:
https://hdl.handle.net/20.500.12585/12584
https://ceur-ws.org/Vol-3496/finances-paper4.pdf
Palabra clave:
Embeddings
FinancES
Phonestheme
Sentiment Analysis
Transformers
LEMB
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_9f0899d0894f54f8d3ea5485795173ea
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12584
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv team UTB-NLP at finances 2023: financial targeted sentiment analysis using a phonestheme semantic approach
title team UTB-NLP at finances 2023: financial targeted sentiment analysis using a phonestheme semantic approach
spellingShingle team UTB-NLP at finances 2023: financial targeted sentiment analysis using a phonestheme semantic approach
Embeddings
FinancES
Phonestheme
Sentiment Analysis
Transformers
LEMB
title_short team UTB-NLP at finances 2023: financial targeted sentiment analysis using a phonestheme semantic approach
title_full team UTB-NLP at finances 2023: financial targeted sentiment analysis using a phonestheme semantic approach
title_fullStr team UTB-NLP at finances 2023: financial targeted sentiment analysis using a phonestheme semantic approach
title_full_unstemmed team UTB-NLP at finances 2023: financial targeted sentiment analysis using a phonestheme semantic approach
title_sort team UTB-NLP at finances 2023: financial targeted sentiment analysis using a phonestheme semantic approach
dc.creator.fl_str_mv Cuadrado, Juan
Martinez, Elizabeth
Martinez-Santos, Juan Carlos
Puertas, Edwin
dc.contributor.author.none.fl_str_mv Cuadrado, Juan
Martinez, Elizabeth
Martinez-Santos, Juan Carlos
Puertas, Edwin
dc.subject.keywords.spa.fl_str_mv Embeddings
FinancES
Phonestheme
Sentiment Analysis
Transformers
topic Embeddings
FinancES
Phonestheme
Sentiment Analysis
Transformers
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description Sentiment analysis in the financial domain is a challenging task that plays a crucial role in understanding public opinion, monitoring market trends, and assessing the impact of news on economic agents. In this shared task, we address targeted sentiment analysis in the financial domain, focusing on identifying the main economic target in news headlines and determining the sentiment polarity towards such targets. We propose a methodology that combines transformer-based models and phonestheme embeddings to extract meaningful features from the text, which are then used in a support vector machine (SVM) classifier for sentiment classification. Our approach shows promising results, outperforming the baseline with an F1-score of 0.529229 in Task 1. This research contributes to financial sentiment analysis by addressing the complexity of financial language and considering multiple economic agents' perspectives.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-12-06T19:38:33Z
dc.date.available.none.fl_str_mv 2023-12-06T19:38:33Z
dc.date.issued.none.fl_str_mv 2023-12-06
dc.date.submitted.none.fl_str_mv 2023-12-06
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
status_str draft
dc.identifier.citation.spa.fl_str_mv Cuadrado, J., Martinez, E., Martinez-Santos, J. C., & Puertas, E. (2023). Team UTB-NLP at FinancES 2023: Financial Targeted Sentiment Analysis Using a Phonestheme Semantic Approach. In Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2023), co-located with the 39th Conference of the Spanish Society for Natural Language Processing (SEPLN 2023), CEUR-WS. org.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12584
dc.identifier.url.none.fl_str_mv https://ceur-ws.org/Vol-3496/finances-paper4.pdf
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Cuadrado, J., Martinez, E., Martinez-Santos, J. C., & Puertas, E. (2023). Team UTB-NLP at FinancES 2023: Financial Targeted Sentiment Analysis Using a Phonestheme Semantic Approach. In Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2023), co-located with the 39th Conference of the Spanish Society for Natural Language Processing (SEPLN 2023), CEUR-WS. org.
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12584
https://ceur-ws.org/Vol-3496/finances-paper4.pdf
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 12 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.publisher.sede.spa.fl_str_mv Campus Tecnológico
dc.publisher.discipline.spa.fl_str_mv Maestría en Ingeniería
dc.source.spa.fl_str_mv Iberian Languages Evaluation Forum
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12584/1/finances-paper4.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12584/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12584/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12584/4/finances-paper4.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12584/5/finances-paper4.pdf.jpg
bitstream.checksum.fl_str_mv e096d6ac68529dcee3517d71a8c8981b
4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
6831f44596e5f7d396bda281c1250394
fdff0c96246960fa19ce10c7d2ceca1e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021660854976512
spelling Cuadrado, Juan73b693c6-9993-4025-9268-0f1bbe13b105Martinez, Elizabeth4ebda059-55c6-4e72-8ce5-81181da731b4Martinez-Santos, Juan Carlos5c958644-c78d-401d-8ba9-bbd39fe77318Puertas, Edwin5a1b1566-e112-43dc-8ac7-310ea9af8f052023-12-06T19:38:33Z2023-12-06T19:38:33Z2023-12-062023-12-06Cuadrado, J., Martinez, E., Martinez-Santos, J. C., & Puertas, E. (2023). Team UTB-NLP at FinancES 2023: Financial Targeted Sentiment Analysis Using a Phonestheme Semantic Approach. In Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2023), co-located with the 39th Conference of the Spanish Society for Natural Language Processing (SEPLN 2023), CEUR-WS. org.https://hdl.handle.net/20.500.12585/12584https://ceur-ws.org/Vol-3496/finances-paper4.pdfUniversidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarSentiment analysis in the financial domain is a challenging task that plays a crucial role in understanding public opinion, monitoring market trends, and assessing the impact of news on economic agents. In this shared task, we address targeted sentiment analysis in the financial domain, focusing on identifying the main economic target in news headlines and determining the sentiment polarity towards such targets. We propose a methodology that combines transformer-based models and phonestheme embeddings to extract meaningful features from the text, which are then used in a support vector machine (SVM) classifier for sentiment classification. Our approach shows promising results, outperforming the baseline with an F1-score of 0.529229 in Task 1. This research contributes to financial sentiment analysis by addressing the complexity of financial language and considering multiple economic agents' perspectives.Universidad Tecnológica de Bolívar12 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Iberian Languages Evaluation Forumteam UTB-NLP at finances 2023: financial targeted sentiment analysis using a phonestheme semantic approachinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1EmbeddingsFinancESPhonesthemeSentiment AnalysisTransformersLEMBCartagena de IndiasCampus TecnológicoMaestría en IngenieríaPúblico generalBowles, S. (2003). Microeconomics: behavior, institutions, and evolution. Princeton University Press.Hasan, M. M., Popp, J., & Oláh, J. (2020). Current landscape and influence of big data on finance. Journal of Big Data, 7(1), 1-17.Puertas, E., Martinez-Santos, J. C., & Pertuz-Duran, P. A. (2022, November). Presidential preferences in Colombia through Sentiment Analysis. In 2022 IEEE ANDESCON (pp. 1-5). IEEE.George, A. S., George, A. H., Baskar, T., & Martin, A. G. (2023). Human Insight AI: An Innovative Technology Bridging The Gap Between Humans And Machines For a Safe, Sustainable Future. Partners Universal International Research Journal, 2(1), 1-15.Man, X., Luo, T., & Lin, J. (2019, May). Financial sentiment analysis (fsa): A survey. In 2019 IEEE International Conference on Industrial Cyber Physical Systems (ICPS) (pp. 617-622). IEEE.Zhao, L., Li, L., Zheng, X., & Zhang, J. (2021, May). A BERT based sentiment analysis and key entity detection approach for online financial texts. In 2021 IEEE 24th International Conference on Computer Supported Cooperative Work in Design (CSCWD) (pp. 1233-1238). IEEE.Dashtipour, K., Gogate, M., Li, J., Jiang, F., Kong, B., & Hussain, A. (2020). A hybrid Persian sentiment analysis framework: Integrating dependency grammar based rules and deep neural networks. Neurocomputing, 380, 1-10.Guarasci, R., Silvestri, S., De Pietro, G., Fujita, H., & Esposito, M. (2023). Assessing BERT’s ability to learn Italian syntax: A study on null-subject and agreement phenomena. Journal of Ambient Intelligence and Humanized Computing, 14(1), 289-303.García-Díaz, J. A., García-Sánchez, F., & Valencia-García, R. (2023). Smart analysis of economics sentiment in Spanish based on linguistic features and transformers. IEEE Access, 11, 14211-14224.Ishizuka, K., & Nakata, K. (2021, April). Text Mining for Factor Modeling of Japanese Stock Performance. In 2021 IEEE 8th International Conference on Industrial Engineering and Applications (ICIEA) (pp. 538-542). IEEE.Gutiérrez-Fandiño, A., Kolm, P. N., i Alonso, M. N., & Armengol-Estapé, J. (2022). FinEAS: Financial Embedding Analysis of Sentiment. The Journal of Financial Data Science, 4(3), 45-53.Jiménez-Zafra, S. M., Rangel, F., & Gómez, M. M. Y. (2023). Overview of IberLEF 2023: Natural Language Processing Challenges for Spanish and other Iberian Languages. In Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2023), co-located with the 39th Conference of the Spanish Society for Natural Language Processing (SEPLN 2023), CEURWS. org.Garcia-Díaz, J. A., Almela, Á., García-Sánchez, F., Alcaraz-Mármol, G., Marín, M. J., & Valencia-García, R. (2023). Overview of FinancES 2023: Financial Targeted Sentiment Analysis in Spanish. Procesamiento del Lenguaje Natural, 71, 417-423.García-Díaz, J. A., Salas-Zárate, M. P., Hernández-Alcaraz, M. L., Valencia-García, R., & Gómez-Berbís, J. M. (2018). Machine learning based sentiment analysis on Spanish financial tweets. In Trends and Advances in Information Systems and Technologies: Volume 1 6 (pp. 305-311). Springer International Publishing.Sun, F., Belatreche, A., Coleman, S., McGinnity, T. M., & Li, Y. (2014, March). Pre-processing online financial text for sentiment classification: A natural language processing approach. In 2014 IEEE Conference on Computational Intelligence for Financial Engineering & Economics (CIFEr) (pp. 122-129). IEEE.Puertas, E., & Martinez-Santos, J. C. (2021). Phonetic detection for hate speech spreaders on Twitter.Husein, A. M., Sipahutar, B., Dashuah, R., & Hutauruk, E. (2023). Sentiment Analysis Od Face To Face School Policy On Twitter Social Media With Support Vector Machine (SVM). Sinkron: jurnal dan penelitian teknik informatika, 8(1), 480-486.Puertas, E. (2020). Embedding of phonestheme in Spanish (1.0). Zenodo. https://doi.org/10.5281/zenodo.4299242Moreno-Sandoval, L. G., Del Castillo, E. A. P., Quimbaya, A. P., & Alvarado-Valencia, J. A. (2020). Assembly of Polarity, Emotion and User Statistics for Detection of Fake Profiles. In CLEF (Working Notes).Hays, C., Schutzman, Z., Raghavan, M., Walk, E., & Zimmer, P. (2023, April). Simplistic Collection and Labeling Practices Limit the Utility of Benchmark Datasets for Twitter Bot Detection. In Proceedings of the ACM Web Conference 2023 (pp. 3660-3669).Nemes, L., & Kiss, A. (2021). Prediction of stock values changes using sentiment analysis of stock news headlines. Journal of Information and Telecommunication, 5(3), 375-394.Zhang, H., Li, Z., Xie, H., Lau, R. Y., Cheng, G., Li, Q., & Zhang, D. (2022). Leveraging statistical information in fine-grained financial sentiment analysis. World Wide Web, 25(2), 513-531.Araci, D. (2019). Finbert: Financial sentiment analysis with pre-trained language models. arXiv preprint arXiv:1908.10063.Valle-Cruz, D., Fernandez-Cortez, V., López-Chau, A., & Sandoval-Almazán, R. (2022). Does twitter affect stock market decisions? financial sentiment analysis during pandemics: A comparative study of the h1n1 and the covid-19 periods. Cognitive computation, 1-16.Puertas Del Castillo, E. A. Análisis de elementos fonéticos y elementos emocionales para predecir la polaridad en fuentes de microblogging.Puertas, E., Moreno-Sandoval, L. G., Redondo, J., Alvarado-Valencia, J. A., & Pomares-Quimbaya, A. (2021). Detection of sociolinguistic features in digital social networks for the detection of communities. Cognitive Computation, 13, 518-537.Pan, R., García-Díaz, J. A., Garcia-Sanchez, F., & Valencia-García, R. (2023). Evaluation of transformer models for financial targeted sentiment analysis in Spanish. PeerJ Computer Science, 9, e1377.Pérez, J. M., Furman, D. A., Alemany, L. A., & Luque, F. (2021). Robertuito: a pre-trained language model for social media text in spanish. arXiv preprint arXiv:2111.09453.http://purl.org/coar/resource_type/c_6501ORIGINALfinances-paper4.pdffinances-paper4.pdfapplication/pdf892658https://repositorio.utb.edu.co/bitstream/20.500.12585/12584/1/finances-paper4.pdfe096d6ac68529dcee3517d71a8c8981bMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12584/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12584/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTfinances-paper4.pdf.txtfinances-paper4.pdf.txtExtracted texttext/plain32387https://repositorio.utb.edu.co/bitstream/20.500.12585/12584/4/finances-paper4.pdf.txt6831f44596e5f7d396bda281c1250394MD54THUMBNAILfinances-paper4.pdf.jpgfinances-paper4.pdf.jpgGenerated Thumbnailimage/jpeg5771https://repositorio.utb.edu.co/bitstream/20.500.12585/12584/5/finances-paper4.pdf.jpgfdff0c96246960fa19ce10c7d2ceca1eMD5520.500.12585/12584oai:repositorio.utb.edu.co:20.500.12585/125842023-12-07 00:29:43.256Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=