Analyzing and Validating Energy Performance through Computational Simulation of a Helical Vertical Axis Wind Turbine
The planning and analysis of a computational study of a wind turbine are conducted starting from the geometric and physical conditions of a system provided by the manufacturer, up to its simulation using fluid dynamics software. This approach allows for comparing the performance curves of the turbin...
- Autores:
-
Fábregas Villegas, Jonathan
Palencia Díaz, Argemiro
Buitrago, Carlos
- Tipo de recurso:
- Fecha de publicación:
- 2024
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/12712
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/12712
https://doi.org/10.37934/arfmts.119.2.103113
- Palabra clave:
- Computational simulation
Helical type
Vertical axis
Wind turbine
LEMB
- Rights
- openAccess
- License
- http://creativecommons.org/publicdomain/zero/1.0/
id |
UTB2_9d8490393e72f795b7ed103f6f72bb3a |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/12712 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.es_CO.fl_str_mv |
Analyzing and Validating Energy Performance through Computational Simulation of a Helical Vertical Axis Wind Turbine |
title |
Analyzing and Validating Energy Performance through Computational Simulation of a Helical Vertical Axis Wind Turbine |
spellingShingle |
Analyzing and Validating Energy Performance through Computational Simulation of a Helical Vertical Axis Wind Turbine Computational simulation Helical type Vertical axis Wind turbine LEMB |
title_short |
Analyzing and Validating Energy Performance through Computational Simulation of a Helical Vertical Axis Wind Turbine |
title_full |
Analyzing and Validating Energy Performance through Computational Simulation of a Helical Vertical Axis Wind Turbine |
title_fullStr |
Analyzing and Validating Energy Performance through Computational Simulation of a Helical Vertical Axis Wind Turbine |
title_full_unstemmed |
Analyzing and Validating Energy Performance through Computational Simulation of a Helical Vertical Axis Wind Turbine |
title_sort |
Analyzing and Validating Energy Performance through Computational Simulation of a Helical Vertical Axis Wind Turbine |
dc.creator.fl_str_mv |
Fábregas Villegas, Jonathan Palencia Díaz, Argemiro Buitrago, Carlos |
dc.contributor.author.none.fl_str_mv |
Fábregas Villegas, Jonathan Palencia Díaz, Argemiro Buitrago, Carlos |
dc.subject.keywords.es_CO.fl_str_mv |
Computational simulation Helical type Vertical axis Wind turbine |
topic |
Computational simulation Helical type Vertical axis Wind turbine LEMB |
dc.subject.armarc.none.fl_str_mv |
LEMB |
description |
The planning and analysis of a computational study of a wind turbine are conducted starting from the geometric and physical conditions of a system provided by the manufacturer, up to its simulation using fluid dynamics software. This approach allows for comparing the performance curves of the turbine and developing a planning model to simulate the behavior of new wind systems before their manufacture. The study is based on the fact that many of these designs are currently available commercially through various manufacturers, who sometimes do not provide performance specifications for these devices. Therefore, it is a necessary objective in the field of design engineering to use computational tools that allow the development of the geometry of a helical vertical-axis wind turbine, as well as the simulation and analysis of fluid dynamics and energy performance results, thus validating the systems before their purchase and implementation. The study provided velocity field profiles throughout the turbine for operating ranges from 0 to 12 m/s, as well as the ideal and operational power coefficient of the simulated turbine, along with the energy potential it can generate. It is worth mentioning that the ideal performance obtained through the simulated model corresponds to an additional 20% of the performance presented by the manufacturer's data, highlighting an 80% conversion efficiency from mechanical to electrical power. The study concludes that the values obtained by simulating the turbine and comparing them with the manufacturer's parameters align satisfactorily, dispelling doubts about the energy performance of the studied turbine. |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-08-26T21:37:58Z |
dc.date.available.none.fl_str_mv |
2024-08-26T21:37:58Z |
dc.date.issued.none.fl_str_mv |
2024-07-30 |
dc.date.submitted.none.fl_str_mv |
2024-08-26 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.es_CO.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasversion.es_CO.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.es_CO.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.citation.es_CO.fl_str_mv |
Fábregas, J. ., Palencia, A. ., & Buitrago, C. . (2024). Analyzing and Validating Energy Performance through Computational Simulation of a Helical Vertical Axis Wind Turbine. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 119(2), 103–113. https://doi.org/10.37934/arfmts.119.2.103113 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/12712 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.37934/arfmts.119.2.103113 |
dc.identifier.instname.es_CO.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.es_CO.fl_str_mv |
Repositorio Universidad Tecnológica de Bolívar |
identifier_str_mv |
Fábregas, J. ., Palencia, A. ., & Buitrago, C. . (2024). Analyzing and Validating Energy Performance through Computational Simulation of a Helical Vertical Axis Wind Turbine. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 119(2), 103–113. https://doi.org/10.37934/arfmts.119.2.103113 Universidad Tecnológica de Bolívar Repositorio Universidad Tecnológica de Bolívar |
url |
https://hdl.handle.net/20.500.12585/12712 https://doi.org/10.37934/arfmts.119.2.103113 |
dc.language.iso.es_CO.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.es_CO.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.cc.*.fl_str_mv |
CC0 1.0 Universal |
rights_invalid_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ CC0 1.0 Universal http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
11 páginas |
dc.format.mimetype.es_CO.fl_str_mv |
application/pdf |
dc.publisher.place.es_CO.fl_str_mv |
Cartagena de Indias |
dc.publisher.faculty.es_CO.fl_str_mv |
Ingeniería |
dc.publisher.sede.es_CO.fl_str_mv |
Campus Tecnológico |
dc.publisher.discipline.es_CO.fl_str_mv |
Ingeniería Mecánica |
dc.source.es_CO.fl_str_mv |
JOURNAL OF ADVANCED RESEARCH IN FLUID MECHANICS AND THERMAL SCIENCES |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/12712/1/ARFMTSV119_N2_P103_113%20%281%29.pdf https://repositorio.utb.edu.co/bitstream/20.500.12585/12712/2/license_rdf https://repositorio.utb.edu.co/bitstream/20.500.12585/12712/3/license.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/12712/4/ARFMTSV119_N2_P103_113%20%281%29.pdf.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/12712/5/ARFMTSV119_N2_P103_113%20%281%29.pdf.jpg |
bitstream.checksum.fl_str_mv |
730b276c0d77425c3cb63d98db032d1c 42fd4ad1e89814f5e4a476b409eb708c e20ad307a1c5f3f25af9304a7a7c86b6 64c9fe0f2ffe1c712a1f4ec3070af9c5 659ae49bdf7d54cd9b73e81b20eca57a |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021710593130496 |
spelling |
Fábregas Villegas, Jonathand0e93bac-ba66-4682-b6a1-b1b4ffe82937Palencia Díaz, Argemirof16cdaf5-429b-4cc1-9893-7261733d2f39Buitrago, Carlos7a4b97b4-f119-46a3-a896-e2cbb54fa6242024-08-26T21:37:58Z2024-08-26T21:37:58Z2024-07-302024-08-26Fábregas, J. ., Palencia, A. ., & Buitrago, C. . (2024). Analyzing and Validating Energy Performance through Computational Simulation of a Helical Vertical Axis Wind Turbine. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 119(2), 103–113. https://doi.org/10.37934/arfmts.119.2.103113https://hdl.handle.net/20.500.12585/12712https://doi.org/10.37934/arfmts.119.2.103113Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThe planning and analysis of a computational study of a wind turbine are conducted starting from the geometric and physical conditions of a system provided by the manufacturer, up to its simulation using fluid dynamics software. This approach allows for comparing the performance curves of the turbine and developing a planning model to simulate the behavior of new wind systems before their manufacture. The study is based on the fact that many of these designs are currently available commercially through various manufacturers, who sometimes do not provide performance specifications for these devices. Therefore, it is a necessary objective in the field of design engineering to use computational tools that allow the development of the geometry of a helical vertical-axis wind turbine, as well as the simulation and analysis of fluid dynamics and energy performance results, thus validating the systems before their purchase and implementation. The study provided velocity field profiles throughout the turbine for operating ranges from 0 to 12 m/s, as well as the ideal and operational power coefficient of the simulated turbine, along with the energy potential it can generate. It is worth mentioning that the ideal performance obtained through the simulated model corresponds to an additional 20% of the performance presented by the manufacturer's data, highlighting an 80% conversion efficiency from mechanical to electrical power. The study concludes that the values obtained by simulating the turbine and comparing them with the manufacturer's parameters align satisfactorily, dispelling doubts about the energy performance of the studied turbine.Universidad Tecnológica de Bolívar11 páginasapplication/pdfenghttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccessCC0 1.0 Universalhttp://purl.org/coar/access_right/c_abf2JOURNAL OF ADVANCED RESEARCH IN FLUID MECHANICS AND THERMAL SCIENCESAnalyzing and Validating Energy Performance through Computational Simulation of a Helical Vertical Axis Wind Turbineinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Computational simulationHelical typeVertical axisWind turbineLEMBCartagena de IndiasIngenieríaCampus TecnológicoIngeniería MecánicaInvestigadoresChan, Chun Man, H. L. Bai, and D. Q. He. "Blade shape optimization of the Savonius wind turbine using a genetic algorithm." Applied Energy 213 (2018): 148-157. https://doi.org/10.1016/j.apenergy.2018.01.029Zemamou, M., M. Aggour, and A. Toumi. "Review of savonius wind turbine design and performance." Energy Procedia 141 (2017): 383-388. https://doi.org/10.1016/j.egypro.2017.11.047Peiravi, M. M., and D. Domiri Ganji. "Generating electrical power using movement of various vehicles in new lighting base." International Journal of Engineering 35, no. 2 (2022): 387-396. https://doi.org/10.5829/IJE.2022.35.02B.15Peiravi, Mohammad Mohsen, and Arman Ashabi. "Hybrid investigation of the helical blades of Savonius wind turbine in novel patent of lighting base." Results in Engineering 15 (2022): 100565. https://doi.org/10.1016/j.rineng.2022.100565Khanjanpour, Mohammad Hassan, and Akbar A. Javadi. "Optimization of the hydrodynamic performance of a vertical Axis tidal (VAT) turbine using CFD-Taguchi approach." Energy Conversion and Management 222 (2020): 113235. https://doi.org/10.1016/j.enconman.2020.113235Didane, Djamal Hissein, Muhammad Nur Arham Bajuri, Mahamat Issa Boukhari, and Bukhari Manshoor. "Performance investigation of vertical axis wind turbine with savonius rotor using computational fluid dynamics (CFD)." CFD Letters 14, no. 8 (2022): 116-124. https://doi.org/10.37934/cfdl.14.8.116124Wong, Kok Hoe, Wen Tong Chong, Sin Chew Poh, Yui-Chuin Shiah, Nazatul Liana Sukiman, and Chin-Tsan Wang. "3D CFD simulation and parametric study of a flat plate deflector for vertical axis wind turbine." Renewable Energy 129 (2018): 32-55. https://doi.org/10.1016/j.renene.2018.05.085Akkarachaiphant, Thanaphat, Boonyarit Chatthong, Yutthana Tirawanichakul, and Montri Luengchavanon. "CFD Simulations Operated by Two Stack Vertical-Axial Wind Turbines for High Performance." CFD Letters 14, no. 3 (2022): 1-10. https://doi.org/10.37934/cfdl.14.3.110Bangga, Galih, Amgad Dessoky, Zhenlong Wu, Krzysztof Rogowski, and Martin OL Hansen. "Accuracy and consistency of CFD and engineering models for simulating vertical axis wind turbine loads." Energy 206 (2020): 118087. https://doi.org/10.1016/j.energy.2020.118087Sahim, Kaprawi, Ilyas Ilyas, Nurhadi Nurhadi, Dewi Puspita Sari, Imam Syofii, Muhammad Amsal Ade Saputra, and Dendy Adanta. "Experimental Study of Darrieus Water Turbine Two Blade Different Configuration and Hybrid Turbine for Application of an Irrigation Flow." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 98, no. 2 (2022): 58-66. https://doi.org/10.37934/arfmts.98.2.5866Rezaeiha, Abdolrahim, Hamid Montazeri, and Bert Blocken. "CFD analysis of dynamic stall on vertical axis wind turbines using Scale-Adaptive Simulation (SAS): Comparison against URANS and hybrid RANS/LES." Energy Conversion and Management 196 (2019): 1282-1298. https://doi.org/10.1016/j.enconman.2019.06.081Saeed, Ramiz Ibraheem, Ahmed Al-Manea, Ahmed Khalid Ibrahim, and Dendy Adanta. "Numerical Investigation on the Effect of Profile and Blade Numbers in a Savonius Vertical Axis Wind Turbine." CFD Letters 14, no. 9 (2022): 75- 88. https://doi.org/10.37934/cfdl.14.9.7588Marinić-Kragić, Ivo, Damir Vučina, and Zoran Milas. "Global optimization of Savonius-type vertical axis wind turbine with multiple circular-arc blades using validated 3D CFD model." Energy 241 (2022): 122841. https://doi.org/10.1016/j.energy.2021.122841Navinkumar, B., K. M. Parammasivam, S. Rajendran, and V. Mohanavel. "CFD analysis of horizontal axis wind turbine braking system using chordwise spacing." Materials Today: Proceedings 37 (2021): 542-552. https://doi.org/10.1016/j.matpr.2020.05.564Garcia-Ribeiro, Daniel, Juan A. Flores-Mezarina, Pedro D. Bravo-Mosquera, and Hernan D. Cerón-Muñoz. "Parametric CFD analysis of the taper ratio effects of a winglet on the performance of a Horizontal Axis Wind Turbine." Sustainable Energy Technologies and Assessments 47 (2021): 101489. https://doi.org/10.1016/j.seta.2021.101489Gaheen, Osama A., Mohamed A. Aziz, M. Hamza, Hoda Kashkoush, and Mohamed A. Khalifa. "Fluid and structure analysis of wind turbine blade with winglet." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 90, no. 1 (2022): 80-101. https://doi.org/10.37934/arfmts.90.1.80101Alam, Khurshid, Muhammad Saeed, Muhammad Iqbal, Afzal Husain, and Himayat Ullah. "Numerical Study on Aerodynamic Performance of S809 Wind Turbine." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 90, no. 1 (2022): 154-162. https://doi.org/10.37934/arfmts.90.1.154162Alam, Khurshid, Muhammad Iqbal, Ahmed Al-Balushi, Afzal Husain, Afaq Ahmed, Abdullah Al-Amrani, Sakhi Jan, Muhammad Amjad, and Saeed Badshah. "Numerical Modeling and Analysis of a Horizontal Axis RM1 NACA-4415 Wind Turbine." CFD Letters 15, no. 3 (2023): 1-11. https://doi.org/10.37934/cfdl.15.3.111Pichandi, Chandrasekar, Perumal Pitchandi, S. Kumar, and Natteri M. Sudharsan. "Improving the performance of a combined horizontal and vertical axis wind turbine for a specific terrain using CFD." Materials Today: Proceedings 62 (2022): 1089-1097. https://doi.org/10.1016/j.matpr.2022.04.317O'Brien, J. M., T. M. Young, D. C. O'Mahoney, and P. C. Griffin. "Horizontal axis wind turbine research: A review of commercial CFD, FE codes and experimental practices." Progress in Aerospace Sciences 92 (2017): 1-24. https://doi.org/10.1016/j.paerosci.2017.05.001Fábregas, Jonathan, Henry Santamaria, Edgardo Buelvas, Saul Perez, Carlos Díaz, Javier Andrés Carpintero Durango, Ricardo Mendoza, and Jennifer Villa. "Computational fluid dynamicsmodeling of microchannels cooling for electronic microdevices." IIUM Engineering Journal 23, no. 1 (2022): 384-396. https://doi.org/10.31436/iiumej.v23i1.2113Diaz, L., L. Ramirez, and J. Fabregas. "Green Logistics in Off-Grid Renewable Energy Projects for the Rural Localities." International Journal on Technical and Physical Problems of Engineering (IJTPE) 48 (2021): 119-124.Ruiz, Saúl Mejía, Marley Vanegas Chamorro, Guillermo Valencia Ochoa, Jonathan Fábregas Villegas, and Carlos Acevedo Peñaloza. "Effects of environmental conditions on photovoltaic generation system performance with polycrystalline panels." International Journal on Advance Science Engineering Information Technology 11, no. 5 (2021): 2031-2038. https://doi.org/10.18517/ijaseit.11.5.9335Villegas, Jonathan Fabregas, Guillermo Valencia Ochoa, and Marley Vanegas Chamorro. "Statistical Wind Energy Analysis and Wind Persistence Assessment for Cordoba And Sucre Departments' Weather Stations in The Caribbean Region of Colombia." International Journal on Advanced Science, Engineering and Information Technology 10, no. 5 (2020): 1760-1766. https://doi.org/10.18517/ijaseit.10.5.6567Fabregas Villegas, J., Arnold Martínez Guarín, and Jimy Unfried-Silgado. "A coupled rigid-viscoplastic numerical modeling for evaluating effects of shoulder geometry on friction stir-welded aluminum alloys." International Journal of Engineering 32, no. 2 (2019): 313-321. https://doi.org/10.5829/ije.2019.32.02b.17Fabregas, Jonathan, Henry Santamaria, Fabio Bermejo, and Wilman Orozco. "Proyecto interdisciplinario en ingeniería para experiencia de laboratorio y simulación térmica de un horno experimental de secado de biomasa como medio de aprendizaje." Revista ESPACIOS 39, no. 20 (2018).Fabregas, J., G. Valencia, and M. Vanegas. "Statistical analysis and evaluation of the wind persistence for stations in Departments of La Guajira and San Andrés & Providencia in Colombia." Espacios 38, no. 08 (2017): 14.Mosbahi, Mabrouk, Mariem Lajnef, Mouna Derbel, Zied Driss, Emanuele Amato, Calogero Picone, Marco Sinagra, and Tullio Tucciarelli. "Effect of the Turbulence Model on the Computational Results of a Lucid Spherical Rotor." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 113, no. 1 (2024): 24-43. https://doi.org/10.37934/arfmts.113.1.2443Suarda, Made, Made Sucipta, and Ibnu Gusti Muttakin. "Semi twisted curve blade vortex turbine performance at runner rotation speed variation using CFD simulation." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 104, no. 2 (2023): 26-35. https://doi.org/10.37934/arfmts.104.2.2635Kunalan, Kerishmaa Theavy, Cheng Yee Ng, and Nauman Riyaz Maldar. "A performance investigation of a multistaging hydrokinetic turbine for river flow." Progress in Energy and Environment 17 (2021): 17-31. https://doi.org/10.37934/progee.17.1.1731Bahambary, Khashayar Rahnamay, and Brian Fleck. "A study of inflow parameters on the performance of a wind turbine in an atmospheric boundary layer." Journal of Advanced Research in Numerical Heat Transfer 11, no. 1 (2022): 5-11.Bajuri, Muhammad Nur Arham, Djamal Hissein Didane, Mahamat Issa Boukhari, and Bukhari Manshoor. "Computational fluid dynamics (CFD) analysis of different sizes of savonius rotor wind turbine." Journal of Advanced Research in Applied Mechanics 94, no. 1 (2022): 7-12. https://doi.org/10.37934/aram.94.1.712Damak, A., Z. Driss, and M. S. Abid. "Experimental investigation of helical Savonius rotor with a twist of 180." Renewable Energy 52 (2013): 136-142. https://doi.org/10.1016/j.renene.2012.10.043Jeon, Keum Soo, Jun Ik Jeong, Jae-Kyung Pan, and Ki-Wahn Ryu. "Effects of end plates with various shapes and sizes on helical Savonius wind turbines." Renewable Energy 79 (2015): 167-176. https://doi.org/10.1016/j.renene.2014.11.035http://purl.org/coar/resource_type/c_2df8fbb1ORIGINALARFMTSV119_N2_P103_113 (1).pdfARFMTSV119_N2_P103_113 (1).pdfArtículo Principalapplication/pdf516589https://repositorio.utb.edu.co/bitstream/20.500.12585/12712/1/ARFMTSV119_N2_P103_113%20%281%29.pdf730b276c0d77425c3cb63d98db032d1cMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.utb.edu.co/bitstream/20.500.12585/12712/2/license_rdf42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12712/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTARFMTSV119_N2_P103_113 (1).pdf.txtARFMTSV119_N2_P103_113 (1).pdf.txtExtracted texttext/plain28260https://repositorio.utb.edu.co/bitstream/20.500.12585/12712/4/ARFMTSV119_N2_P103_113%20%281%29.pdf.txt64c9fe0f2ffe1c712a1f4ec3070af9c5MD54THUMBNAILARFMTSV119_N2_P103_113 (1).pdf.jpgARFMTSV119_N2_P103_113 (1).pdf.jpgGenerated Thumbnailimage/jpeg7301https://repositorio.utb.edu.co/bitstream/20.500.12585/12712/5/ARFMTSV119_N2_P103_113%20%281%29.pdf.jpg659ae49bdf7d54cd9b73e81b20eca57aMD5520.500.12585/12712oai:repositorio.utb.edu.co:20.500.12585/127122024-08-27 00:15:28.822Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo= |