Advanced control strategies for cleaner energy conversion in biomass gasification

The escalating climate crisis necessitates urgent and decisive action to mitigate greenhouse gas emissions. Gasification stands out as a highly adaptable process for energy conversion, capable of handling a wide range of feedstocks, from coal to biomass. The process plays a significant role in impro...

Full description

Autores:
Palencia Díaz, Argemiro
Fábregas Villegas, Jonathan
Velilla Díaz, Wilmer
Monroy Barrios, Johann
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12951
Acceso en línea:
https://hdl.handle.net/20.500.12585/12951
https://doi.org/10.3390/su162310691
Palabra clave:
Gasification
Sustainability
Biomass
LEMB
Rights
openAccess
License
http://creativecommons.org/publicdomain/zero/1.0/
id UTB2_9d7449c683dc57cb8e0e247415d2c926
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12951
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Advanced control strategies for cleaner energy conversion in biomass gasification
title Advanced control strategies for cleaner energy conversion in biomass gasification
spellingShingle Advanced control strategies for cleaner energy conversion in biomass gasification
Gasification
Sustainability
Biomass
LEMB
title_short Advanced control strategies for cleaner energy conversion in biomass gasification
title_full Advanced control strategies for cleaner energy conversion in biomass gasification
title_fullStr Advanced control strategies for cleaner energy conversion in biomass gasification
title_full_unstemmed Advanced control strategies for cleaner energy conversion in biomass gasification
title_sort Advanced control strategies for cleaner energy conversion in biomass gasification
dc.creator.fl_str_mv Palencia Díaz, Argemiro
Fábregas Villegas, Jonathan
Velilla Díaz, Wilmer
Monroy Barrios, Johann
dc.contributor.author.none.fl_str_mv Palencia Díaz, Argemiro
Fábregas Villegas, Jonathan
Velilla Díaz, Wilmer
Monroy Barrios, Johann
dc.subject.keywords.spa.fl_str_mv Gasification
Sustainability
Biomass
topic Gasification
Sustainability
Biomass
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description The escalating climate crisis necessitates urgent and decisive action to mitigate greenhouse gas emissions. Gasification stands out as a highly adaptable process for energy conversion, capable of handling a wide range of feedstocks, from coal to biomass. The process plays a significant role in improving sustainability by converting these feedstocks into synthesic gas (syngas), which can be used as a cleaner energy source or as a building block for producing various chemicals. The utilization of syngas obtained through gasification not only reduces the reliance on fossil fuels but also helps in reducing greenhouse gases (GHGs), thereby contributing to a more sustainable energy landscape. To maintain optimal operational conditions and ensure the quality and safety of the product, an effective control system is crucial in the gasification process. This paper presents a comparative analysis of three control strategies applied to a numerical model of rice husk gasification: classical control, fuzzy logic control, and dynamic matrix control. The analysis is based on a comprehensive model that includes the equations necessary to capture the dynamic behavior of the gasification process across its various stages. The goal is to identify the most effective control strategy, and the performance of each control strategy is evaluated based on the integral of the absolute value of the error (IAE). The results indicatethat fuzzy logic control consistently outperforms classical control techniques, demonstrating superior disturbance rejection, enhanced stability, and overall improved control accuracy. These findings highlight the importance of selecting an appropriate advanced control strategy to optimize sustainable gasification processes.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-12-06T13:31:17Z
dc.date.available.none.fl_str_mv 2024-12-06T13:31:17Z
dc.date.issued.none.fl_str_mv 2024-12-06
dc.date.submitted.none.fl_str_mv 2024-12-06
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Velilla-Díaz, W., Barrios, J. M., Villegas, J. F., & Palencia-Díaz, A. (2024). Advanced Control Strategies for Cleaner Energy Conversion in Biomass Gasification. Sustainability, 16(23), 10691. https://doi.org/10.3390/su162310691
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12951
dc.identifier.doi.none.fl_str_mv https://doi.org/10.3390/su162310691
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Velilla-Díaz, W., Barrios, J. M., Villegas, J. F., & Palencia-Díaz, A. (2024). Advanced Control Strategies for Cleaner Energy Conversion in Biomass Gasification. Sustainability, 16(23), 10691. https://doi.org/10.3390/su162310691
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12951
https://doi.org/10.3390/su162310691
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv CC0 1.0 Universal
rights_invalid_str_mv http://creativecommons.org/publicdomain/zero/1.0/
CC0 1.0 Universal
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 16 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.publisher.faculty.spa.fl_str_mv Ingeniería
dc.publisher.sede.spa.fl_str_mv Campus Tecnológico
dc.publisher.discipline.spa.fl_str_mv Ingeniería Mecatrónica
dc.source.spa.fl_str_mv Sustainability
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12951/1/sustainability-16-10691.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12951/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12951/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12951/4/sustainability-16-10691.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12951/5/sustainability-16-10691.pdf.jpg
bitstream.checksum.fl_str_mv 123428acc2053edd47b0e1fd4c95e559
42fd4ad1e89814f5e4a476b409eb708c
e20ad307a1c5f3f25af9304a7a7c86b6
1ad1946e863595689ba7dbbc1992b74f
1f05cabcbf0b73d03ac61ca062b547eb
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1834107700027326464
spelling Palencia Díaz, Argemirof16cdaf5-429b-4cc1-9893-7261733d2f39Fábregas Villegas, Jonathand0e93bac-ba66-4682-b6a1-b1b4ffe82937Velilla Díaz, Wilmer0b62bcbc-7077-4361-9708-424b68c21cf7Monroy Barrios, Johann96880f66-066d-450e-91cc-c00bb5b192c62024-12-06T13:31:17Z2024-12-06T13:31:17Z2024-12-062024-12-06Velilla-Díaz, W., Barrios, J. M., Villegas, J. F., & Palencia-Díaz, A. (2024). Advanced Control Strategies for Cleaner Energy Conversion in Biomass Gasification. Sustainability, 16(23), 10691. https://doi.org/10.3390/su162310691https://hdl.handle.net/20.500.12585/12951https://doi.org/10.3390/su162310691Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThe escalating climate crisis necessitates urgent and decisive action to mitigate greenhouse gas emissions. Gasification stands out as a highly adaptable process for energy conversion, capable of handling a wide range of feedstocks, from coal to biomass. The process plays a significant role in improving sustainability by converting these feedstocks into synthesic gas (syngas), which can be used as a cleaner energy source or as a building block for producing various chemicals. The utilization of syngas obtained through gasification not only reduces the reliance on fossil fuels but also helps in reducing greenhouse gases (GHGs), thereby contributing to a more sustainable energy landscape. To maintain optimal operational conditions and ensure the quality and safety of the product, an effective control system is crucial in the gasification process. This paper presents a comparative analysis of three control strategies applied to a numerical model of rice husk gasification: classical control, fuzzy logic control, and dynamic matrix control. The analysis is based on a comprehensive model that includes the equations necessary to capture the dynamic behavior of the gasification process across its various stages. The goal is to identify the most effective control strategy, and the performance of each control strategy is evaluated based on the integral of the absolute value of the error (IAE). The results indicatethat fuzzy logic control consistently outperforms classical control techniques, demonstrating superior disturbance rejection, enhanced stability, and overall improved control accuracy. These findings highlight the importance of selecting an appropriate advanced control strategy to optimize sustainable gasification processes.16 páginasapplication/pdfenghttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccessCC0 1.0 Universalhttp://purl.org/coar/access_right/c_abf2SustainabilityAdvanced control strategies for cleaner energy conversion in biomass gasificationinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85GasificationSustainabilityBiomassLEMBCartagena de IndiasIngenieríaCampus TecnológicoIngeniería MecatrónicaInvestigadoresNarnaware, S.L.; Panwar, N. Biomass gasification for climate change mitigation and policy framework in India: A review. Bioresour. Technol. Rep. 2022, 17, 100892Pereira, E.G.; Da Silva, J.N.; De Oliveira, J.L.; Machado, C.S. Sustainable energy: A review of gasification technologies. Renew. Sustain. Energy Rev. 2012, 16, 4753–4762Sun, Y.; Wang, S.; Yang, Q.; Li, J.; Wang, L.; Zhang, S.; Yang, H.; Chen, H. Environmental impact assessment of VOC emissions from biomass gasification power generation system based on life cycle analysis. Fuel 2023, 335, 126905.Leisin, M.; Radgen, P. Holistic assessment of decarbonization pathways of energy-intensive industries based on exergy analysis. Sustainability 2023, 16, 351.Fanelli, E. CFD Hydrodynamics Investigations for Optimum Biomass Gasifier Design. Processes 2020, 8, 1323.Wu, Z.; Yuan, J.; Liu, Y.; Li, D.; Chen, Y. An active disturbance rejection control design with actuator rate limit compensation for the ALSTOM gasifier benchmark problem. Energy 2021, 227, 120447.Huang, C.E.; Li, D.; Xue, Y. Active disturbance rejection control for the ALSTOM gasifier benchmark problem. Control Eng. Pract. 2013, 21, 556–564.Asaad, S.M.; Inayat, A.; Rocha-Meneses, L.; Jamil, F.; Ghenai, C.; Shanableh, A. Prospective of response surface methodology as an optimization tool for biomass gasification process. Energies 2022, 16, 40.Alvarez, J.; Villegas, J.F.; Márquez, M.; Carpintero, J. Energy Evaluation of Synthesis Gas in a Turbocharger System Employing CFD Tools. CFD Lett. 2024, 16, 109–119.Chanthakett, A.; Arif, M.T.; Khan, M.; Oo, A.M. Performance assessment of gasification reactors for sustainable management of municipal solid waste. J. Environ. Manag. 2021, 291, 112661.Kačur, J.; Laciak, M.; Durdán, M.; Flegner, P.; Frančáková, R. A review of research on advanced control methods for underground coal gasification processes. Energies 2023, 16, 3458.Kačur, J.; Kostúr, K. Approaches to the Gas Control in UCG. Acta Polytech. 2017, 57, 182–200.Hou, Z.; Liu, S.; Yin, C. Local learning-based model-free adaptive predictive control for adjustment of oxygen concentration in syngas manufacturing industry. IET Control Theory Appl. 2016, 10, 1384–1394.Khattak, M.; Uppal, A.A.; Khan, Q.; Bhatti, A.I.; Alsmadi, Y.M.; Utkin, V.I.; Chairez, I. Neuro-adaptive sliding mode control for underground coal gasification energy conversion process. Int. J. Control 2022, 95, 2337–2348.Sadaka, S.S.; Ghaly, A.E.; Sabbah, M.A. Two phase biomass air-steam gasification model for fluidized bed reactors: Part II—Model sensitivity. Biomass Bioenergy 2002, 22, 463–477.Filho, P.T.D.; Silveira, J.L.; Tuna, C.E.; Lamas, W.D.Q. Energetic, ecologic and fluid-dynamic analysis of a fluidized bed gasifier operating with sugar cane bagasse. Appl. Therm. Eng. 2013, 57, 116–124.Gómez-Barea, A.; Leckner, B. Modeling of biomass gasification in fluidized bed. Prog. Energy Combust. Sci. 2010, 36, 444–509.Gordillo, E.D.; Belghit, A. A two phase model of high temperature steam-only gasification of biomass char in bubbling fluidized bed reactors using nuclear heat. Int. J. Hydrogen Energy 2011, 36, 374–381.Palencia, A.; Martínez, J.E.A. Experimental study of forestry waste gasification: Pinewood chips-grass mixtures. J. Renew. Sustain. Energy 2019, 11, 044701.Zhang, Y.; Jin, B.; Zhong, W. Experimental investigation on mixing and segregation behavior of biomass particle in fluidized bed. Chem. Eng. Process. Process Intensif. 2009, 48, 745–754.Das, B.; Bhattacharya, A.; Datta, A. Kinetic modeling of biomass gasification and tar formation in a fluidized bed gasifier using equivalent reactor network (ERN). Fuel 2020, 280, 118582.di Carlo, A.; Moroni, M.; Savuto, E.; Pallozzi, V.; Bocci, E.; di Lillo, P. Cold model testing of an innovative dual bubbling fluidized bed steam gasifier. Chem. Eng. J. 2019, 377, 119689.Pio, D.T.; Tarelho, L.A.C. Empirical and chemical equilibrium modelling for prediction of biomass gasification products in bubbling fluidized beds. Energy 2020, 202, 117654Wang, S.; Shen, Y. CFD-DEM study of biomass gasification in a fluidized bed reactor: Effects of key operating parameters. Renew. Energy 2020, 159, 1146–1164Yang, S.; Liu, X.; Wang, S. CFD simulation of air-blown coal gasification in a fluidized bed reactor with continuous feedstock. Energy Convers. Manag. 2020, 213, 112774.Ribeiro, V.H.A.; Reynoso-Meza, G. Multi-objective PID Controller Tuning for an Industrial Gasifier. In Proceedings of the 2018 IEEE Congress on Evolutionary Computation, CEC 2018—Proceedings, Rio de Janeiro, Brazil, 8–13 July 2018Huang, R.; Kang, Y.; Fu, X.; Xie, Z. Biomass gasification temperature parameter adaptive time-delay compensator design. In Proceedings of the Chinese Control Conference (CCC), Xi’an, China, 26–28 July 2013; Volume 2, pp. 3100–3103.Li, D.; Xue, Y.; Wang, W.; Sun, L. Decentralized PID controller tuning based on desired dynamic equations. In Proceedings of the IFAC Proceedings Volumes (IFAC-PapersOnline), Cape Town, South Africa, 24–29 August 2014; Volume 19Oswald, C.; Šulc, B. Achieving Optimal Operating Conditions in PI Controlled Biomass-fired Boilers: Undemanding way for improvement of small-scale boiler effectiveness. In Proceedings of the 12th International Carpathian Control Conference (ICCC), Velke Karlovice, Czech Republic, 25–28 May 2011; pp. 280–285.Reynoso-Meza, G.; Sanchis, J.; Herrero, J.M.; Ramos, C. Evolutionary auto-tuning algorithm for PID controllers. IFAC Proc. Vol. 2012, 2, 631–636.Azamfar, M.; Markazi, A.H.D. Simple formulae for control of industrial time delay systems. Lat. Am. J. Solids Struct. 2016, 13, 2463–2486.Gomes, H.M. Fuzzy logic for structural system control. Lat. Am. J. Solids Struct. 2012, 9, 111–129.Morin, M.; Pécate, S.; Hémati, M. Experimental study and modelling of the kinetic of biomass char gasification in a fluidized bed reactor. Chem. Eng. Res. Des. 2018, 131, 488–505.Sadaka, S.S.; Ghaly, A.E.; Sabbah, M.A. Two phase biomass air-steam gasification model for fluidized bed reactors: Part I—Model development. Biomass Bioenergy 2002, 22, 439–462.Sadaka, S.S.; Ghaly, A.E.; Sabbah, M.A. Two-phase biomass air-steam gasification model for fluidized bed reactors: Part III—Model validation. Biomass Bioenergy 2002, 22, 479–487.Stark, A.K.; Altantzis, C.; Bates, R.B.; Ghoniem, A.F. Towards an advanced reactor network modeling framework for fluidized bed biomass gasification: Incorporating information from detailed CFD simulations. Chem. Eng. J. 2016, 303, 409–424.Yan, L.; Lim, C.J.; Yue, G.; He, B.; Grace, J.R. Simulation of biomass-steam gasification in fluidized bed reactors: Model setup, comparisons and preliminary predictions. Bioresour. Technol. 2016, 221, 625–635.Kombe, E.Y.; Lang’at, N.; Njogu, P.; Malessa, R.; Weber, C.T.; Njoka, F.; Krause, U. Process modeling and evaluation of optimal operating conditions for production of hydrogen-rich syngas from air gasification of rice husks using aspen plus and response surface methodology. Bioresour. Technol. 2022, 361, 127734.Camargo, J.V.; Restrepo, A.H. Caracterización térmica y estequiométrica de la combustión de la cascarilla de arroz. Sci. Tech. 2004, 1, 139–144.Pougatch, K.; Salcudean, M.; McMillan, J. Three-dimensional numerical modelling of interactions between a gas-liquid jet and a fluidized bed. Chem. Eng. Sci. 2012, 68, 258–277.Nyakuma, B.B.; Wong, S.; Mong, G.R.; Utume, L.N.; Oladokun, O.; Wong, K.Y.; Ivase, T.J.P.; Abdullah, T.A.T. Bibliometric analysis of the research landscape on rice husks gasification (1995–2019). Environ. Sci. Pollut. Res. 2021, 28, 49467–49490.Li, W.; Wu, S.; Wu, Y.; Huang, S.; Gao, J. Gasification characteristics of biomass at a high-temperature steam atmosphere. Fuel Process. Technol. 2019, 194, 106090.Dafiqurrohman, H.; Safitri, K.A.; Setyawan, M.I.B.; Surjosatyo, A.; Aziz, M. Gasification of rice wastes toward green and sustainable energy production: A review. J. Clean. Prod. 2022, 366, 132926.Díaz, A.P.; Barraza, C.L.; Chamorro, R.J.; Santamaria, H. Enfoques Para El Análisis de Sistemas Energéticos: Estudios de Casos, 1st ed.; Universidad Autónoma del Caribe: Barranquilla, Colombia, 2013.Sajona, J.; Velilla, W.; Fábregas, J.; Palencia, A. Fuzzy gain scheduling: Comparison of the control strategy. J. Eng. Sci. Technol. 2022, 17, 1356–1368.Vivius, A.G.; Mejía, M.S. Ecuaciones de sintonización para controladores difusos basadas en modelos de primer orden más tiempo muerto. Ing. Desarro. Rev. Div. Ing. Univ. Del Norte 2006, 19, 74–87Shridhar, R.; Cooper, D.J. Selection of the move suppression coefficients in tuning dynamic matrix control. In Proceedings of the American Control Conference, Albuquerque, NM, USA, 4–6 June 1997; Volume 1, pp. 729–733.http://purl.org/coar/resource_type/c_2df8fbb1ORIGINALsustainability-16-10691.pdfsustainability-16-10691.pdfArtículo Principalapplication/pdf417971https://repositorio.utb.edu.co/bitstream/20.500.12585/12951/1/sustainability-16-10691.pdf123428acc2053edd47b0e1fd4c95e559MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.utb.edu.co/bitstream/20.500.12585/12951/2/license_rdf42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12951/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTsustainability-16-10691.pdf.txtsustainability-16-10691.pdf.txtExtracted texttext/plain48472https://repositorio.utb.edu.co/bitstream/20.500.12585/12951/4/sustainability-16-10691.pdf.txt1ad1946e863595689ba7dbbc1992b74fMD54THUMBNAILsustainability-16-10691.pdf.jpgsustainability-16-10691.pdf.jpgGenerated Thumbnailimage/jpeg7842https://repositorio.utb.edu.co/bitstream/20.500.12585/12951/5/sustainability-16-10691.pdf.jpg1f05cabcbf0b73d03ac61ca062b547ebMD5520.500.12585/12951oai:repositorio.utb.edu.co:20.500.12585/129512024-12-07 00:15:41.527Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=