Vibrational response of elastic membranes coupled to acoustic fluids using a BEM–BEM formulation

In the last two decades, few works have been reported in the literature related to analysis of fluid–structure interaction problems using Boundary Element Method for modeling both structure and fluid. To the author’s knowledge, none of them applied to the dynamic analysis of elastic membranes couple...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2014
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/9040
Acceso en línea:
https://hdl.handle.net/20.500.12585/9040
Palabra clave:
Acoustic fluid
Boundary element method
Dual reciprocity boundary element method
Elastic membrane
Fluid–structure interaction
Membranes
Poisson equation
Sailing vessels
Structural dynamics
Fluids
Acceleration of the particles
Boundary element formulations
Dual reciprocity boundary element method
Elastic membranes
Fundamental solutions
Interaction problems
Three-dimensional Poisson equations
Vibrational response
Boundary element method
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_9be5e016220c73ac2979ac2b71939096
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/9040
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Vibrational response of elastic membranes coupled to acoustic fluids using a BEM–BEM formulation
title Vibrational response of elastic membranes coupled to acoustic fluids using a BEM–BEM formulation
spellingShingle Vibrational response of elastic membranes coupled to acoustic fluids using a BEM–BEM formulation
Acoustic fluid
Boundary element method
Dual reciprocity boundary element method
Elastic membrane
Fluid–structure interaction
Membranes
Poisson equation
Sailing vessels
Structural dynamics
Fluids
Acceleration of the particles
Boundary element formulations
Dual reciprocity boundary element method
Elastic membranes
Fundamental solutions
Interaction problems
Three-dimensional Poisson equations
Vibrational response
Boundary element method
title_short Vibrational response of elastic membranes coupled to acoustic fluids using a BEM–BEM formulation
title_full Vibrational response of elastic membranes coupled to acoustic fluids using a BEM–BEM formulation
title_fullStr Vibrational response of elastic membranes coupled to acoustic fluids using a BEM–BEM formulation
title_full_unstemmed Vibrational response of elastic membranes coupled to acoustic fluids using a BEM–BEM formulation
title_sort Vibrational response of elastic membranes coupled to acoustic fluids using a BEM–BEM formulation
dc.subject.keywords.none.fl_str_mv Acoustic fluid
Boundary element method
Dual reciprocity boundary element method
Elastic membrane
Fluid–structure interaction
Membranes
Poisson equation
Sailing vessels
Structural dynamics
Fluids
Acceleration of the particles
Boundary element formulations
Dual reciprocity boundary element method
Elastic membranes
Fundamental solutions
Interaction problems
Three-dimensional Poisson equations
Vibrational response
Boundary element method
topic Acoustic fluid
Boundary element method
Dual reciprocity boundary element method
Elastic membrane
Fluid–structure interaction
Membranes
Poisson equation
Sailing vessels
Structural dynamics
Fluids
Acceleration of the particles
Boundary element formulations
Dual reciprocity boundary element method
Elastic membranes
Fundamental solutions
Interaction problems
Three-dimensional Poisson equations
Vibrational response
Boundary element method
description In the last two decades, few works have been reported in the literature related to analysis of fluid–structure interaction problems using Boundary Element Method for modeling both structure and fluid. To the author’s knowledge, none of them applied to the dynamic analysis of elastic membranes coupled to acoustic fluids. In this work a full time-direct Boundary Element Formulation for the dynamic analysis of elastic membranes coupled to acoustics fluid is presented. The elastic membranes is modeled using the classical linear elastic pre-stretched membrane theory. The acoustic fluid is modeled using the acoustic-wave equation for homogeneous, isotropic, inviscid and irrotational fluids. Elastostatic fundamental solution is used in the boundary element formulation for the elastic membrane. The boundary element formulation for the acoustic fluid is based on the fundamental solution of three dimensional Poisson equation. Domain integrals related to inertial terms and those related with distributed pressure on membrane, were treated using the Dual Reciprocity Boundary ElementMethod. Fluid–structure coupling equations were established considering the continuity of the normal acceleration of the particles and dynamic pressure at fluid–structure interfaces. The time integration is carried out using the Houbolt method. Results obtained shows the accuracy and efficiency of the proposed boundary element formulation. © The Society for Experimental Mechanics, Inc. 2014.
publishDate 2014
dc.date.issued.none.fl_str_mv 2014
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:32:49Z
dc.date.available.none.fl_str_mv 2020-03-26T16:32:49Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_c94f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.hasversion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Conferencia
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Conference Proceedings of the Society for Experimental Mechanics Series; Vol. 7, pp. 333-340
dc.identifier.isbn.none.fl_str_mv 9783319007649
dc.identifier.issn.none.fl_str_mv 21915644
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/9040
dc.identifier.doi.none.fl_str_mv 10.1007/978-3-319-04753-9_34
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 24537991200
57191289623
identifier_str_mv Conference Proceedings of the Society for Experimental Mechanics Series; Vol. 7, pp. 333-340
9783319007649
21915644
10.1007/978-3-319-04753-9_34
Universidad Tecnológica de Bolívar
Repositorio UTB
24537991200
57191289623
url https://hdl.handle.net/20.500.12585/9040
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.conferenceplace.none.fl_str_mv Orlando, FL
dc.relation.conferencedate.none.fl_str_mv 3 February 2014 through 6 February 2014
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer New York LLC
publisher.none.fl_str_mv Springer New York LLC
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-84988696963&doi=10.1007%2f978-3-319-04753-9_34&partnerID=40&md5=9272c3475f9c34eb49dd434f936ef071
institution Universidad Tecnológica de Bolívar
dc.source.event.none.fl_str_mv 32nd IMAC Conference and Exposition on Structural Dynamics, 2014
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/9040/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021769997058048
spelling 2020-03-26T16:32:49Z2020-03-26T16:32:49Z2014Conference Proceedings of the Society for Experimental Mechanics Series; Vol. 7, pp. 333-340978331900764921915644https://hdl.handle.net/20.500.12585/904010.1007/978-3-319-04753-9_34Universidad Tecnológica de BolívarRepositorio UTB2453799120057191289623In the last two decades, few works have been reported in the literature related to analysis of fluid–structure interaction problems using Boundary Element Method for modeling both structure and fluid. To the author’s knowledge, none of them applied to the dynamic analysis of elastic membranes coupled to acoustic fluids. In this work a full time-direct Boundary Element Formulation for the dynamic analysis of elastic membranes coupled to acoustics fluid is presented. The elastic membranes is modeled using the classical linear elastic pre-stretched membrane theory. The acoustic fluid is modeled using the acoustic-wave equation for homogeneous, isotropic, inviscid and irrotational fluids. Elastostatic fundamental solution is used in the boundary element formulation for the elastic membrane. The boundary element formulation for the acoustic fluid is based on the fundamental solution of three dimensional Poisson equation. Domain integrals related to inertial terms and those related with distributed pressure on membrane, were treated using the Dual Reciprocity Boundary ElementMethod. Fluid–structure coupling equations were established considering the continuity of the normal acceleration of the particles and dynamic pressure at fluid–structure interfaces. The time integration is carried out using the Houbolt method. Results obtained shows the accuracy and efficiency of the proposed boundary element formulation. © The Society for Experimental Mechanics, Inc. 2014.Recurso electrónicoapplication/pdfengSpringer New York LLChttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84988696963&doi=10.1007%2f978-3-319-04753-9_34&partnerID=40&md5=9272c3475f9c34eb49dd434f936ef07132nd IMAC Conference and Exposition on Structural Dynamics, 2014Vibrational response of elastic membranes coupled to acoustic fluids using a BEM–BEM formulationinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fAcoustic fluidBoundary element methodDual reciprocity boundary element methodElastic membraneFluid–structure interactionMembranesPoisson equationSailing vesselsStructural dynamicsFluidsAcceleration of the particlesBoundary element formulationsDual reciprocity boundary element methodElastic membranesFundamental solutionsInteraction problemsThree-dimensional Poisson equationsVibrational responseBoundary element methodOrlando, FL3 February 2014 through 6 February 2014Useche Vivero, JairoNarvaez A.Burgschweiger, R., Ochmann, M., Nolte, B., Calculation of the acoustic target strength of elastic objects based on BEM–BEM-coupling (2008) J Acoust Soc Am, 123, p. 3757Chen, P.-T., Ju, S.-H., Cha, K.-C., A symmetric formulation of coupled BEM/FEM in solving responses of submerged elastic structures for large degrees of freedom (2000) J Sound Vib, 233, pp. 407-422Citarella, R., Federico, L., Cicatiello, A., Modal acoustic transfer vector approach in a FEM–BEM vibro-acoustic analysis (2008) Eng Anal Bound Elem, 31, pp. 248-258Dhandole, S.D., Modak, S.V., Review of vibro-acoustics analysis procedures for prediction of low frequency noise inside a cavity (2005) IMAC XXV Conference and Exposition on Structural DynamicsEverstine, G.C., Henderson, F.M., Coupled finite element/boundary element approach for fluid–structure interaction (1990) J Acoust Soc Am, 87, pp. 1938-1947Fritze, D., Marburg, S., Hardtke, H.-J., FEM–BEM coupling and structural acoustic sensitivity analysis for shell geometries (2005) Comput Struct, 83, pp. 143-154Gaul, L., Wenzel, W., A coupled symmetric BEM–FEM method for acoustic fluid–structure interaction (2002) Eng Anal Bound Elem, 26, pp. 629-636He, Z., Liu, G., Zhong, Z., Zhang, G., Cheng, A., A coupled ES-FEM/BEM method for fluid–structure interaction problems (2011) Eng Anal Bound Elem, 35, pp. 140-147Hwang, T., Ting, K., Boundary element method for fluid-structure interaction problems in fluid storage tanks (1989) J Press Vessel Technol, 111 (4), pp. 435-440Kinsler, L.E., Frey, A.R., Coppens, A.B., Sanders, J.V., (2005) Fundamental of Acoustics, , Wiley-Blackwell, Chichester, New YorkMackerle, J., Fluid–structure interaction problems, finite element and boundary element approaches: A bibliography (1995–1998) (1999) Finite Elem Anal Des J, 31, pp. 231-240Marburg, S., Nolte, B., (2010) Computational Acoustics of Noise Propagation in fluids—finite and Boundary Element Methods, , Springer, BerlinMorand, P., Ohayon, R., (1995) Fluid Structure Interaction, , Wiley-Blackwell, Chichester, New YorkNaumenkob, V., Strelnikovac, E., Yeselevac, E., Free vibrations of shells of revolution filled with a fluid (2010) Eng Anal Bound Elem J, 34 (10), pp. 856-862Nolte, B., Fluid–structure-interaction-phenomena on the basis of a BEM–BEM coupling formulation (1998) ISMA 23Th International Conference on Noise and Vibration Engineering, pp. 705-710. , September 1998, LeuvenNolte, B., Gaul, L., Fluid–structure interaction with the boundary element method (1999) Proceedings of the 17Th IMAC International Modal Analysis Conference, 1, pp. 496-502. , KissimmeeOf, G., Steinbach, O., Coupled FE/BE formulations for the fluid–structure interaction (2011) Domain Decomposition Methods in Science and Engineering XIX, 78, pp. 293-300. , Huang Y, Kornhuber R, Widlund O, Xu J, Lecture notes in computational science and engineering. Springer, BerlinPartridge, P., Brebbia, C., Wrobel, L., (1992) The Dual Reciprocity Boundary Element Method. Computational Mechanics Publications, , SouthamptonShekari, M.R., Khaji, N., Ahmadi, M.T., A coupled BE-FE study for evaluation of seismically isolated cylindrical liquid storage tanks considering fluid–structure interaction (2009) J Fluids Struct, 25 (3)Soares, D., Acoustic modelling by BEM–FEM coupling procedures taking into account explicit and implicit multi-domain decomposition techniques (2009) Int J Numer Methods Eng, 78, pp. 1076-1093Soares, D., Von Estorf, O., Mansur, W.J., Efficient non-linear solid–fluid interaction analysis by an iterative BEM/FEM coupling (2005) Int J Numer Methods Eng, 64, pp. 1416-1431Soares, D., Mansur, W., Dynamic analysis of fluid–soil–structure interaction problems by the boundary element method (2006) J Comput Phys, 219, pp. 498-512Tanaka, M., Masuda, Y., Boundary element method applied to certain structural-acoustic coupling problems (1988) Comput Methods Appl Mech Eng, 71, pp. 225-234Wrobel, L.C., Aliabadi, M.H., (2002) The Boundary Element Method Volume 2: Applications in Solid and Structures, , Wiley, New YorkWrobel, L.C., (2002) The Boundary Element Method Volume 1: Applications in Thermo-Fluids and Acoustics, , Wiley-Blackwell, Chichester, New YorkYoung, Y., Fluid–structure interaction analysis of flexible composite marine propellers (2008) J Fluids Struct, 24, pp. 799-818http://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9040/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9040oai:repositorio.utb.edu.co:20.500.12585/90402023-04-24 09:19:09.108Repositorio Institucional UTBrepositorioutb@utb.edu.co