Vibrational response of elastic membranes coupled to acoustic fluids using a BEM–BEM formulation
In the last two decades, few works have been reported in the literature related to analysis of fluid–structure interaction problems using Boundary Element Method for modeling both structure and fluid. To the author’s knowledge, none of them applied to the dynamic analysis of elastic membranes couple...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2014
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/9040
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/9040
- Palabra clave:
- Acoustic fluid
Boundary element method
Dual reciprocity boundary element method
Elastic membrane
Fluid–structure interaction
Membranes
Poisson equation
Sailing vessels
Structural dynamics
Fluids
Acceleration of the particles
Boundary element formulations
Dual reciprocity boundary element method
Elastic membranes
Fundamental solutions
Interaction problems
Three-dimensional Poisson equations
Vibrational response
Boundary element method
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_9be5e016220c73ac2979ac2b71939096 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/9040 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
Vibrational response of elastic membranes coupled to acoustic fluids using a BEM–BEM formulation |
title |
Vibrational response of elastic membranes coupled to acoustic fluids using a BEM–BEM formulation |
spellingShingle |
Vibrational response of elastic membranes coupled to acoustic fluids using a BEM–BEM formulation Acoustic fluid Boundary element method Dual reciprocity boundary element method Elastic membrane Fluid–structure interaction Membranes Poisson equation Sailing vessels Structural dynamics Fluids Acceleration of the particles Boundary element formulations Dual reciprocity boundary element method Elastic membranes Fundamental solutions Interaction problems Three-dimensional Poisson equations Vibrational response Boundary element method |
title_short |
Vibrational response of elastic membranes coupled to acoustic fluids using a BEM–BEM formulation |
title_full |
Vibrational response of elastic membranes coupled to acoustic fluids using a BEM–BEM formulation |
title_fullStr |
Vibrational response of elastic membranes coupled to acoustic fluids using a BEM–BEM formulation |
title_full_unstemmed |
Vibrational response of elastic membranes coupled to acoustic fluids using a BEM–BEM formulation |
title_sort |
Vibrational response of elastic membranes coupled to acoustic fluids using a BEM–BEM formulation |
dc.subject.keywords.none.fl_str_mv |
Acoustic fluid Boundary element method Dual reciprocity boundary element method Elastic membrane Fluid–structure interaction Membranes Poisson equation Sailing vessels Structural dynamics Fluids Acceleration of the particles Boundary element formulations Dual reciprocity boundary element method Elastic membranes Fundamental solutions Interaction problems Three-dimensional Poisson equations Vibrational response Boundary element method |
topic |
Acoustic fluid Boundary element method Dual reciprocity boundary element method Elastic membrane Fluid–structure interaction Membranes Poisson equation Sailing vessels Structural dynamics Fluids Acceleration of the particles Boundary element formulations Dual reciprocity boundary element method Elastic membranes Fundamental solutions Interaction problems Three-dimensional Poisson equations Vibrational response Boundary element method |
description |
In the last two decades, few works have been reported in the literature related to analysis of fluid–structure interaction problems using Boundary Element Method for modeling both structure and fluid. To the author’s knowledge, none of them applied to the dynamic analysis of elastic membranes coupled to acoustic fluids. In this work a full time-direct Boundary Element Formulation for the dynamic analysis of elastic membranes coupled to acoustics fluid is presented. The elastic membranes is modeled using the classical linear elastic pre-stretched membrane theory. The acoustic fluid is modeled using the acoustic-wave equation for homogeneous, isotropic, inviscid and irrotational fluids. Elastostatic fundamental solution is used in the boundary element formulation for the elastic membrane. The boundary element formulation for the acoustic fluid is based on the fundamental solution of three dimensional Poisson equation. Domain integrals related to inertial terms and those related with distributed pressure on membrane, were treated using the Dual Reciprocity Boundary ElementMethod. Fluid–structure coupling equations were established considering the continuity of the normal acceleration of the particles and dynamic pressure at fluid–structure interfaces. The time integration is carried out using the Houbolt method. Results obtained shows the accuracy and efficiency of the proposed boundary element formulation. © The Society for Experimental Mechanics, Inc. 2014. |
publishDate |
2014 |
dc.date.issued.none.fl_str_mv |
2014 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:32:49Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:32:49Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_c94f |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
dc.type.hasversion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Conferencia |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
Conference Proceedings of the Society for Experimental Mechanics Series; Vol. 7, pp. 333-340 |
dc.identifier.isbn.none.fl_str_mv |
9783319007649 |
dc.identifier.issn.none.fl_str_mv |
21915644 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/9040 |
dc.identifier.doi.none.fl_str_mv |
10.1007/978-3-319-04753-9_34 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
24537991200 57191289623 |
identifier_str_mv |
Conference Proceedings of the Society for Experimental Mechanics Series; Vol. 7, pp. 333-340 9783319007649 21915644 10.1007/978-3-319-04753-9_34 Universidad Tecnológica de Bolívar Repositorio UTB 24537991200 57191289623 |
url |
https://hdl.handle.net/20.500.12585/9040 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.conferenceplace.none.fl_str_mv |
Orlando, FL |
dc.relation.conferencedate.none.fl_str_mv |
3 February 2014 through 6 February 2014 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_16ec |
eu_rights_str_mv |
restrictedAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer New York LLC |
publisher.none.fl_str_mv |
Springer New York LLC |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84988696963&doi=10.1007%2f978-3-319-04753-9_34&partnerID=40&md5=9272c3475f9c34eb49dd434f936ef071 |
institution |
Universidad Tecnológica de Bolívar |
dc.source.event.none.fl_str_mv |
32nd IMAC Conference and Exposition on Structural Dynamics, 2014 |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/9040/1/MiniProdInv.png |
bitstream.checksum.fl_str_mv |
0cb0f101a8d16897fb46fc914d3d7043 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021769997058048 |
spelling |
2020-03-26T16:32:49Z2020-03-26T16:32:49Z2014Conference Proceedings of the Society for Experimental Mechanics Series; Vol. 7, pp. 333-340978331900764921915644https://hdl.handle.net/20.500.12585/904010.1007/978-3-319-04753-9_34Universidad Tecnológica de BolívarRepositorio UTB2453799120057191289623In the last two decades, few works have been reported in the literature related to analysis of fluid–structure interaction problems using Boundary Element Method for modeling both structure and fluid. To the author’s knowledge, none of them applied to the dynamic analysis of elastic membranes coupled to acoustic fluids. In this work a full time-direct Boundary Element Formulation for the dynamic analysis of elastic membranes coupled to acoustics fluid is presented. The elastic membranes is modeled using the classical linear elastic pre-stretched membrane theory. The acoustic fluid is modeled using the acoustic-wave equation for homogeneous, isotropic, inviscid and irrotational fluids. Elastostatic fundamental solution is used in the boundary element formulation for the elastic membrane. The boundary element formulation for the acoustic fluid is based on the fundamental solution of three dimensional Poisson equation. Domain integrals related to inertial terms and those related with distributed pressure on membrane, were treated using the Dual Reciprocity Boundary ElementMethod. Fluid–structure coupling equations were established considering the continuity of the normal acceleration of the particles and dynamic pressure at fluid–structure interfaces. The time integration is carried out using the Houbolt method. Results obtained shows the accuracy and efficiency of the proposed boundary element formulation. © The Society for Experimental Mechanics, Inc. 2014.Recurso electrónicoapplication/pdfengSpringer New York LLChttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84988696963&doi=10.1007%2f978-3-319-04753-9_34&partnerID=40&md5=9272c3475f9c34eb49dd434f936ef07132nd IMAC Conference and Exposition on Structural Dynamics, 2014Vibrational response of elastic membranes coupled to acoustic fluids using a BEM–BEM formulationinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fAcoustic fluidBoundary element methodDual reciprocity boundary element methodElastic membraneFluid–structure interactionMembranesPoisson equationSailing vesselsStructural dynamicsFluidsAcceleration of the particlesBoundary element formulationsDual reciprocity boundary element methodElastic membranesFundamental solutionsInteraction problemsThree-dimensional Poisson equationsVibrational responseBoundary element methodOrlando, FL3 February 2014 through 6 February 2014Useche Vivero, JairoNarvaez A.Burgschweiger, R., Ochmann, M., Nolte, B., Calculation of the acoustic target strength of elastic objects based on BEM–BEM-coupling (2008) J Acoust Soc Am, 123, p. 3757Chen, P.-T., Ju, S.-H., Cha, K.-C., A symmetric formulation of coupled BEM/FEM in solving responses of submerged elastic structures for large degrees of freedom (2000) J Sound Vib, 233, pp. 407-422Citarella, R., Federico, L., Cicatiello, A., Modal acoustic transfer vector approach in a FEM–BEM vibro-acoustic analysis (2008) Eng Anal Bound Elem, 31, pp. 248-258Dhandole, S.D., Modak, S.V., Review of vibro-acoustics analysis procedures for prediction of low frequency noise inside a cavity (2005) IMAC XXV Conference and Exposition on Structural DynamicsEverstine, G.C., Henderson, F.M., Coupled finite element/boundary element approach for fluid–structure interaction (1990) J Acoust Soc Am, 87, pp. 1938-1947Fritze, D., Marburg, S., Hardtke, H.-J., FEM–BEM coupling and structural acoustic sensitivity analysis for shell geometries (2005) Comput Struct, 83, pp. 143-154Gaul, L., Wenzel, W., A coupled symmetric BEM–FEM method for acoustic fluid–structure interaction (2002) Eng Anal Bound Elem, 26, pp. 629-636He, Z., Liu, G., Zhong, Z., Zhang, G., Cheng, A., A coupled ES-FEM/BEM method for fluid–structure interaction problems (2011) Eng Anal Bound Elem, 35, pp. 140-147Hwang, T., Ting, K., Boundary element method for fluid-structure interaction problems in fluid storage tanks (1989) J Press Vessel Technol, 111 (4), pp. 435-440Kinsler, L.E., Frey, A.R., Coppens, A.B., Sanders, J.V., (2005) Fundamental of Acoustics, , Wiley-Blackwell, Chichester, New YorkMackerle, J., Fluid–structure interaction problems, finite element and boundary element approaches: A bibliography (1995–1998) (1999) Finite Elem Anal Des J, 31, pp. 231-240Marburg, S., Nolte, B., (2010) Computational Acoustics of Noise Propagation in fluids—finite and Boundary Element Methods, , Springer, BerlinMorand, P., Ohayon, R., (1995) Fluid Structure Interaction, , Wiley-Blackwell, Chichester, New YorkNaumenkob, V., Strelnikovac, E., Yeselevac, E., Free vibrations of shells of revolution filled with a fluid (2010) Eng Anal Bound Elem J, 34 (10), pp. 856-862Nolte, B., Fluid–structure-interaction-phenomena on the basis of a BEM–BEM coupling formulation (1998) ISMA 23Th International Conference on Noise and Vibration Engineering, pp. 705-710. , September 1998, LeuvenNolte, B., Gaul, L., Fluid–structure interaction with the boundary element method (1999) Proceedings of the 17Th IMAC International Modal Analysis Conference, 1, pp. 496-502. , KissimmeeOf, G., Steinbach, O., Coupled FE/BE formulations for the fluid–structure interaction (2011) Domain Decomposition Methods in Science and Engineering XIX, 78, pp. 293-300. , Huang Y, Kornhuber R, Widlund O, Xu J, Lecture notes in computational science and engineering. Springer, BerlinPartridge, P., Brebbia, C., Wrobel, L., (1992) The Dual Reciprocity Boundary Element Method. Computational Mechanics Publications, , SouthamptonShekari, M.R., Khaji, N., Ahmadi, M.T., A coupled BE-FE study for evaluation of seismically isolated cylindrical liquid storage tanks considering fluid–structure interaction (2009) J Fluids Struct, 25 (3)Soares, D., Acoustic modelling by BEM–FEM coupling procedures taking into account explicit and implicit multi-domain decomposition techniques (2009) Int J Numer Methods Eng, 78, pp. 1076-1093Soares, D., Von Estorf, O., Mansur, W.J., Efficient non-linear solid–fluid interaction analysis by an iterative BEM/FEM coupling (2005) Int J Numer Methods Eng, 64, pp. 1416-1431Soares, D., Mansur, W., Dynamic analysis of fluid–soil–structure interaction problems by the boundary element method (2006) J Comput Phys, 219, pp. 498-512Tanaka, M., Masuda, Y., Boundary element method applied to certain structural-acoustic coupling problems (1988) Comput Methods Appl Mech Eng, 71, pp. 225-234Wrobel, L.C., Aliabadi, M.H., (2002) The Boundary Element Method Volume 2: Applications in Solid and Structures, , Wiley, New YorkWrobel, L.C., (2002) The Boundary Element Method Volume 1: Applications in Thermo-Fluids and Acoustics, , Wiley-Blackwell, Chichester, New YorkYoung, Y., Fluid–structure interaction analysis of flexible composite marine propellers (2008) J Fluids Struct, 24, pp. 799-818http://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9040/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9040oai:repositorio.utb.edu.co:20.500.12585/90402023-04-24 09:19:09.108Repositorio Institucional UTBrepositorioutb@utb.edu.co |