Fire Scars Mapping Over Brazilian Amazon Forest by Exploiting Sentinel-2 Data and Deep Learning

Wildfires in the Brazilian Amazon have raised significant concerns owing to the environmental, social, and global impacts associated with these events. They have led to habitat loss for various species and release of substantial amounts of carbon dioxide into the atmosphere. Thereby contributing to...

Full description

Autores:
Camacho-De Angulo, Yineth Viviana
Rosa, Nicolas Cechinel
Solano-Correa, Yady Tatiana
Roisenberg, Mauro
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12732
Acceso en línea:
https://hdl.handle.net/20.500.12585/12732
Palabra clave:
Deep Learning
Remote Sensing
Semantic Segmentation
Wildfires
Brazilian Amazon
LEMB
Rights
closedAccess
License
http://purl.org/coar/access_right/c_14cb
id UTB2_9bcdaba1aed5fe8f77fb70cb51fb2424
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12732
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Fire Scars Mapping Over Brazilian Amazon Forest by Exploiting Sentinel-2 Data and Deep Learning
title Fire Scars Mapping Over Brazilian Amazon Forest by Exploiting Sentinel-2 Data and Deep Learning
spellingShingle Fire Scars Mapping Over Brazilian Amazon Forest by Exploiting Sentinel-2 Data and Deep Learning
Deep Learning
Remote Sensing
Semantic Segmentation
Wildfires
Brazilian Amazon
LEMB
title_short Fire Scars Mapping Over Brazilian Amazon Forest by Exploiting Sentinel-2 Data and Deep Learning
title_full Fire Scars Mapping Over Brazilian Amazon Forest by Exploiting Sentinel-2 Data and Deep Learning
title_fullStr Fire Scars Mapping Over Brazilian Amazon Forest by Exploiting Sentinel-2 Data and Deep Learning
title_full_unstemmed Fire Scars Mapping Over Brazilian Amazon Forest by Exploiting Sentinel-2 Data and Deep Learning
title_sort Fire Scars Mapping Over Brazilian Amazon Forest by Exploiting Sentinel-2 Data and Deep Learning
dc.creator.fl_str_mv Camacho-De Angulo, Yineth Viviana
Rosa, Nicolas Cechinel
Solano-Correa, Yady Tatiana
Roisenberg, Mauro
dc.contributor.author.none.fl_str_mv Camacho-De Angulo, Yineth Viviana
Rosa, Nicolas Cechinel
Solano-Correa, Yady Tatiana
Roisenberg, Mauro
dc.subject.keywords.spa.fl_str_mv Deep Learning
Remote Sensing
Semantic Segmentation
Wildfires
Brazilian Amazon
topic Deep Learning
Remote Sensing
Semantic Segmentation
Wildfires
Brazilian Amazon
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description Wildfires in the Brazilian Amazon have raised significant concerns owing to the environmental, social, and global impacts associated with these events. They have led to habitat loss for various species and release of substantial amounts of carbon dioxide into the atmosphere. Thereby contributing to climate change and deterioration of air quality due to pollutants emission. The integration of advanced technologies, including high-spatial resolution satellite data and image processing algorithms, enables a more precise and comprehensive understanding of the wildfire scenario. This research introduces a model based on deep learning that can be applied over Sentinel-2 images to reliably detect fire scars with an accuracy above 90% (92% on training data and 82% on validation data). A SpectrumNet convolutional neural network was employed, incorporating features extracted from spectral bands at 10m and 20m.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-09-12T14:01:44Z
dc.date.available.none.fl_str_mv 2024-09-12T14:01:44Z
dc.date.issued.none.fl_str_mv 2024-07-12
dc.date.submitted.none.fl_str_mv 2024-09-11
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_8544
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/lecture
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_c94f
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Y. V. Camacho-De Angulo; N. C. Rosa; Y. T. Solano-Correa; M. Roisenberg, "Fire Scars Mapping Over Brazilian Amazon Forest by Exploiting Sentinel-2 Data and Deep Learning," in 2024 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Athens, Greece, Jul. 2024. DOI: 10.1109/IGARSS53475.2024.10642369.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12732
dc.identifier.doi.none.fl_str_mv 10.1109/IGARSS53475.2024.10642369
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Y. V. Camacho-De Angulo; N. C. Rosa; Y. T. Solano-Correa; M. Roisenberg, "Fire Scars Mapping Over Brazilian Amazon Forest by Exploiting Sentinel-2 Data and Deep Learning," in 2024 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Athens, Greece, Jul. 2024. DOI: 10.1109/IGARSS53475.2024.10642369.
10.1109/IGARSS53475.2024.10642369
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12732
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_14cb
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/closedAccess
eu_rights_str_mv closedAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_14cb
dc.format.extent.none.fl_str_mv 4 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.publisher.faculty.spa.fl_str_mv Ciencias Básicas
dc.source.spa.fl_str_mv IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12732/1/2024-C-Fire%20Scars%20Mapping%20Over%20Brazilian%20Amazon%20Forest%20by%20Exploiting%20Sentinel-2%20Data%20and%20Deep%20Learning.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12732/2/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12732/3/2024-C-Fire%20Scars%20Mapping%20Over%20Brazilian%20Amazon%20Forest%20by%20Exploiting%20Sentinel-2%20Data%20and%20Deep%20Learning.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12732/4/2024-C-Fire%20Scars%20Mapping%20Over%20Brazilian%20Amazon%20Forest%20by%20Exploiting%20Sentinel-2%20Data%20and%20Deep%20Learning.pdf.jpg
bitstream.checksum.fl_str_mv 03b9189e93b34a756cd44543de6b0d57
e20ad307a1c5f3f25af9304a7a7c86b6
443b1346f4fe29cb82006740a167ea38
b9933e320535c9a43fca7f20c646c542
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021562737623040
spelling Camacho-De Angulo, Yineth Vivianadf97ad9f-47e5-45c8-922c-d1e2b12c9708Rosa, Nicolas Cechinelb7e1e707-4335-441a-95b7-e64dfee063ecSolano-Correa, Yady Tatianac3d85b81-c6f5-4ad0-80dc-65e4cf4283b1Roisenberg, Maurob82483b1-1b24-4356-8b2f-305190e1ae822024-09-12T14:01:44Z2024-09-12T14:01:44Z2024-07-122024-09-11Y. V. Camacho-De Angulo; N. C. Rosa; Y. T. Solano-Correa; M. Roisenberg, "Fire Scars Mapping Over Brazilian Amazon Forest by Exploiting Sentinel-2 Data and Deep Learning," in 2024 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Athens, Greece, Jul. 2024. DOI: 10.1109/IGARSS53475.2024.10642369.https://hdl.handle.net/20.500.12585/1273210.1109/IGARSS53475.2024.10642369Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarWildfires in the Brazilian Amazon have raised significant concerns owing to the environmental, social, and global impacts associated with these events. They have led to habitat loss for various species and release of substantial amounts of carbon dioxide into the atmosphere. Thereby contributing to climate change and deterioration of air quality due to pollutants emission. The integration of advanced technologies, including high-spatial resolution satellite data and image processing algorithms, enables a more precise and comprehensive understanding of the wildfire scenario. This research introduces a model based on deep learning that can be applied over Sentinel-2 images to reliably detect fire scars with an accuracy above 90% (92% on training data and 82% on validation data). A SpectrumNet convolutional neural network was employed, incorporating features extracted from spectral bands at 10m and 20m.4 páginasapplication/pdfengIEEE International Geoscience and Remote Sensing Symposium (IGARSS)Fire Scars Mapping Over Brazilian Amazon Forest by Exploiting Sentinel-2 Data and Deep Learninginfo:eu-repo/semantics/lectureinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_c94fhttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_8544Deep LearningRemote SensingSemantic SegmentationWildfiresBrazilian AmazonLEMBinfo:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbCartagena de IndiasCiencias BásicasInvestigadoresS. Singh, “Forest fire emissions: A contribution to global climate change,” Frontiers in Forests and Global Change, vol. 5, 11 2022.F. Carta, C. Zidda, M. Putzu, D. Loru, M. Anedda, and D. Giusto, “Advancements in forest fire prevention: A comprehensive survey,” Sensors, vol. 23, no. 14, p. 6635, 2023.G. Martins, J. Nogueira, A. Setzer, and F. Morelli, “Comparison between different versions of inpe’s fire risk model for the brazilian biomes,” The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XLII-3/W12-2020, pp. 119–124, 2020.K. Covey, F. Soper, S. Pangala, A. Bernardino, Z. Pagliaro, L. Basso, H. Cassol, P. Fearnside, D. Navarrete, S. Novoa, H. Sawakuchi, T. Lovejoy, J. Marengo, C. A. Peres, J. Baillie, P. Bernasconi, J. Camargo, C. Freitas, B. Hoffman, G. B. Nardoto, I. Nobre, J. Mayorga, R. Mesquita, S. Pavan, F. Pinto, F. Rocha, R. de Assis Mello, A. Thuault, A. A. Bahl, and A. Elmore, “Carbon and beyond: The biogeochemistry of climate in a rapidly changing amazon,” Frontiers in Forests and Global Change, vol. 4, 3 2021.A. Saleh, M. A. Zulkifley, H. H. Harun, F. Gaudreault, I. Davison, and M. Spraggon, “Forest fire surveillance systems: A review of deep learning methods,” Heliyon, vol. 10, no. 1, p. e23127, 2024.B. Leblon, L. Bourgeau-Chavez, and J. San-Miguel- Ayanz, “Use of remote sensing in wildfire management,” in Sustainable Development (S. Curkovic, ed.), ch. 3, Rijeka: IntechOpen, 2012.R. Libonati, C. C. DaCamara, A. W. Setzer, F. Morelli, and A. E. Melchiori, “An algorithm for burned area detection in the brazilian cerrado using 4 μm modis imagery,” Remote sensing, vol. 7, no. 11, pp. 15782– 15803, 2015.I. Mancilla-Wulff, J. Carrasco, C. Pais, A. Miranda, and A. Weintraub, “Two scalable approaches for burnedarea mapping using u-net and landsat imagery,” arXiv preprint arXiv:2311.17368, 2023.D. N. Gonc¸alves, J. M. Junior, A. C. Carrilho, P. R. Acosta, A. P. M. Ramos, F. D. G. Gomes, L. P. Osco, M. da Rosa Oliveira, J. A. C. Martins, G. A. D. J´unior, et al., “Transformers for mapping burned areas in brazilian pantanal and amazon with planetscope imagery,” International Journal of Applied Earth Observation and Geoinformation, vol. 116, p. 103151, 2023.G. Tejada, E. B. G¨orgens, A. Ovando, and J. P. Ometto, “Mapping data gaps to estimate biomass across brazilian amazon forests,” Forest Ecosystems, vol. 7, pp. 1–15, 2020.P. B. T. das Neves, C. J. C. Blanco, A. A. A. M. Duarte, F. B. S. das Neves, I. B. S. das Neves, and M. H. d. P. dos Santos, “Amazon rainforest deforestation influenced by clandestine and regular roadway network,” Land Use Policy, vol. 108, p. 105510, 2021.C. S. Cronan, “Tropical ecology and deforestation,” in Ecology and Ecosystems Analysis, pp. 241–249, Springer, 2023.R. D. Garrett, F. Cammelli, J. Ferreira, S. A. Levy, J. Valentim, and I. Vieira, “Forests and sustainable development in the brazilian amazon: history, trends, and future prospects,” Annual Review of Environment and Resources, vol. 46, pp. 625–652, 2021.A. A. Ioris, “Rethinking brazil’s pantanal wetland: Beyond narrow development and conservation debates,” The Journal of Environment & Development, vol. 22, no. 3, pp. 239–260, 2013.J. J. Senecal, J. W. Sheppard, and J. A. Shaw, “Efficient convolutional neural networks for multi-spectral image classification,” in 2019 International Joint Conference on Neural Networks (IJCNN), pp. 1–8, IEEE, 2019.http://purl.org/coar/resource_type/c_c94fORIGINAL2024-C-Fire Scars Mapping Over Brazilian Amazon Forest by Exploiting Sentinel-2 Data and Deep Learning.pdf2024-C-Fire Scars Mapping Over Brazilian Amazon Forest by Exploiting Sentinel-2 Data and Deep Learning.pdfapplication/pdf2386344https://repositorio.utb.edu.co/bitstream/20.500.12585/12732/1/2024-C-Fire%20Scars%20Mapping%20Over%20Brazilian%20Amazon%20Forest%20by%20Exploiting%20Sentinel-2%20Data%20and%20Deep%20Learning.pdf03b9189e93b34a756cd44543de6b0d57MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12732/2/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD52TEXT2024-C-Fire Scars Mapping Over Brazilian Amazon Forest by Exploiting Sentinel-2 Data and Deep Learning.pdf.txt2024-C-Fire Scars Mapping Over Brazilian Amazon Forest by Exploiting Sentinel-2 Data and Deep Learning.pdf.txtExtracted texttext/plain18400https://repositorio.utb.edu.co/bitstream/20.500.12585/12732/3/2024-C-Fire%20Scars%20Mapping%20Over%20Brazilian%20Amazon%20Forest%20by%20Exploiting%20Sentinel-2%20Data%20and%20Deep%20Learning.pdf.txt443b1346f4fe29cb82006740a167ea38MD53THUMBNAIL2024-C-Fire Scars Mapping Over Brazilian Amazon Forest by Exploiting Sentinel-2 Data and Deep Learning.pdf.jpg2024-C-Fire Scars Mapping Over Brazilian Amazon Forest by Exploiting Sentinel-2 Data and Deep Learning.pdf.jpgGenerated Thumbnailimage/jpeg9494https://repositorio.utb.edu.co/bitstream/20.500.12585/12732/4/2024-C-Fire%20Scars%20Mapping%20Over%20Brazilian%20Amazon%20Forest%20by%20Exploiting%20Sentinel-2%20Data%20and%20Deep%20Learning.pdf.jpgb9933e320535c9a43fca7f20c646c542MD5420.500.12585/12732oai:repositorio.utb.edu.co:20.500.12585/127322024-09-13 00:18:23.778Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=