Analysis of hydraulic transients during pipeline filling processes with air valves in large-scale installations

During the filling process in pressurized hydraulic systems, sudden pressure changes generated inside the pipes can cause significant damage. To avoid these excessive overpressures, air valves should be installed to allow air exchange between the inside and outside during the filling process. This s...

Full description

Autores:
Fuertes Miquel, Vicente S.
Coronado Hernández, Óscar Enrique
Ponz-Carcelén Roman
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/9503
Acceso en línea:
https://hdl.handle.net/20.500.12585/9503
https://www.tandfonline.com/doi/abs/10.1080/1573062X.2020.1800762
Palabra clave:
Rights
closedAccess
License
http://purl.org/coar/access_right/c_14cb
id UTB2_9b4fedfd2924fdd93b6351db0dfa0fa4
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/9503
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Analysis of hydraulic transients during pipeline filling processes with air valves in large-scale installations
title Analysis of hydraulic transients during pipeline filling processes with air valves in large-scale installations
spellingShingle Analysis of hydraulic transients during pipeline filling processes with air valves in large-scale installations
title_short Analysis of hydraulic transients during pipeline filling processes with air valves in large-scale installations
title_full Analysis of hydraulic transients during pipeline filling processes with air valves in large-scale installations
title_fullStr Analysis of hydraulic transients during pipeline filling processes with air valves in large-scale installations
title_full_unstemmed Analysis of hydraulic transients during pipeline filling processes with air valves in large-scale installations
title_sort Analysis of hydraulic transients during pipeline filling processes with air valves in large-scale installations
dc.creator.fl_str_mv Fuertes Miquel, Vicente S.
Coronado Hernández, Óscar Enrique
Ponz-Carcelén Roman
dc.contributor.author.none.fl_str_mv Fuertes Miquel, Vicente S.
Coronado Hernández, Óscar Enrique
Ponz-Carcelén Roman
dc.contributor.other.none.fl_str_mv Romero, Guillermo
Ponz-Carcelén, Román
Biel-Sanchis, Francisco
description During the filling process in pressurized hydraulic systems, sudden pressure changes generated inside the pipes can cause significant damage. To avoid these excessive overpressures, air valves should be installed to allow air exchange between the inside and outside during the filling process. This study presents a mathematical model to analyse the hydraulic transients during filling processes. This model, which has already been validated in small laboratories, is now applied to real large-scale systems that consist of DN400 and DN600 pipelines from Empresa Mixta Metropolitana S.A (EMIMET – Group Global Omnium), which is the company that manages the water supply of the metropolitan area of Valencia (from the Drinking Water Treatment Station to the municipalities). The mathematical model for large pipes is validated by comparing the experimental measurements and the results of model.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-10-29T21:25:24Z
dc.date.available.none.fl_str_mv 2020-10-29T21:25:24Z
dc.date.issued.none.fl_str_mv 2020-04-13
dc.date.submitted.none.fl_str_mv 2020-10-28
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.spa.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Guillermo Romero, Vicente S. Fuertes-Miquel, Óscar E. Coronado-Hernández, Román Ponz-Carcelén & Francisco Biel-Sanchis (2020) Analysis of hydraulic transients during pipeline filling processes with air valves in large-scale installations, Urban Water Journal, 17:6, 568-575, DOI: 10.1080/1573062X.2020.1800762
dc.identifier.issn.none.fl_str_mv 1573-062X
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/9503
dc.identifier.url.none.fl_str_mv https://www.tandfonline.com/doi/abs/10.1080/1573062X.2020.1800762
dc.identifier.doi.none.fl_str_mv 10.1080/1573062X.2020.1800762
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Guillermo Romero, Vicente S. Fuertes-Miquel, Óscar E. Coronado-Hernández, Román Ponz-Carcelén & Francisco Biel-Sanchis (2020) Analysis of hydraulic transients during pipeline filling processes with air valves in large-scale installations, Urban Water Journal, 17:6, 568-575, DOI: 10.1080/1573062X.2020.1800762
1573-062X
10.1080/1573062X.2020.1800762
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/9503
https://www.tandfonline.com/doi/abs/10.1080/1573062X.2020.1800762
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_14cb
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/closedAccess
eu_rights_str_mv closedAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_14cb
dc.format.extent.none.fl_str_mv 7 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.publisher.sede.spa.fl_str_mv Campus Tecnológico
dc.publisher.discipline.spa.fl_str_mv Ingeniería Civil
dc.source.spa.fl_str_mv Urban Water Journal Volume 17, 2020 - Issue 6
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/9503/1/40.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/9503/2/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/9503/3/40.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/9503/4/40.pdf.jpg
bitstream.checksum.fl_str_mv 8054bef20889f7df4b744cfed51b27d9
e20ad307a1c5f3f25af9304a7a7c86b6
af21fe375250b22ea08234d8ab2f8812
7b0cc796963a1893ca86c8c4fe685715
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021805419003904
spelling Fuertes Miquel, Vicente S.f682be4f-81f2-4a2c-b84a-347dbfe6756fCoronado Hernández, Óscar Enriqueb47200b6-5b93-42e3-b9ee-3c619bcec915Ponz-Carcelén Romanefc3567d-c11a-4cbf-b3ac-ec36844541c7Romero, Guillermo3b480478-6d45-4966-bbfe-b84d79af63c0Ponz-Carcelén, Román5c856185-a49a-4951-a644-a592ece6a756Biel-Sanchis, Franciscoa83d4197-64d2-4762-80a8-88fbc65409c62020-10-29T21:25:24Z2020-10-29T21:25:24Z2020-04-132020-10-28Guillermo Romero, Vicente S. Fuertes-Miquel, Óscar E. Coronado-Hernández, Román Ponz-Carcelén & Francisco Biel-Sanchis (2020) Analysis of hydraulic transients during pipeline filling processes with air valves in large-scale installations, Urban Water Journal, 17:6, 568-575, DOI: 10.1080/1573062X.2020.18007621573-062Xhttps://hdl.handle.net/20.500.12585/9503https://www.tandfonline.com/doi/abs/10.1080/1573062X.2020.180076210.1080/1573062X.2020.1800762Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarDuring the filling process in pressurized hydraulic systems, sudden pressure changes generated inside the pipes can cause significant damage. To avoid these excessive overpressures, air valves should be installed to allow air exchange between the inside and outside during the filling process. This study presents a mathematical model to analyse the hydraulic transients during filling processes. This model, which has already been validated in small laboratories, is now applied to real large-scale systems that consist of DN400 and DN600 pipelines from Empresa Mixta Metropolitana S.A (EMIMET – Group Global Omnium), which is the company that manages the water supply of the metropolitan area of Valencia (from the Drinking Water Treatment Station to the municipalities). The mathematical model for large pipes is validated by comparing the experimental measurements and the results of model.7 páginasapplication/pdfengUrban Water Journal Volume 17, 2020 - Issue 6Analysis of hydraulic transients during pipeline filling processes with air valves in large-scale installationsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbCartagena de IndiasCampus TecnológicoIngeniería CivilInvestigadoresAbreu, J. , E.Cabrera, J.Izquierdo, and J.García-Serra . 1999. “Flow Modeling in Pressurized Systems Revisited.” Journal of Hydraulic Engineering 125 (11): 1154–1169. doi:10.1061/(ASCE)0733-9429(1999)125:11(1154).Apollonio, C. , G.Balacco, N.Fontana, M.Giugni, G.Marini, and A. F.Piccinni . 2016. “Hydraulic Transients Caused by Air Expulsion during Rapid Filling of Undulating Pipelines.” Water 8 (1): 25. doi:10.3390/w8010025.AWWA . 2001. American Water Works Association (AWWA). Manual of Water Supply Practices - M51: Air-Release, Air-Vacuum, and Combination Air Valves . 1st ed. Denver, CO: Denver.Balacco, G. , C.Apollonio, and A. F.Piccinni . 2015. “Experimental Analysis of Air Valve Behaviour during Hydraulic Transients.” Journal of Applied Water Engineering and Research 3 (1): 3–11. doi:10.1080/23249676.2015.1032374.Balacco, G. , N.Fontana, C.Apollonio, M.Giugni, G.Marini, and A. F.Piccinni . 2018. “Pressure Surges during Filling of Partially Empty Undulating Pipelines.” ISH Journal of Hydraulic Engineering 1 (9). doi:10.1080/09715010.2018.1548309.Besharat, M. , R.Tarinejad, M. T.Aalami, and H. M.Ramos . 2016. “Study of a Compressed Air Vessel for Controlling the Pressure Surge in Water Networks: CFD and Experimental Analysis.” Water Resources Management 30 (8): 2687–2702. doi:10.1007/s11269-016-1310-1.Chaudhry, M. H. 2014. Applied Hydraulic Transients. Columbia . SC, USA: Springer.Coronado-Hernández, O. E. , M.Besharat, V. S.Fuertes-Miquel, and H. M.Ramos . 2019. “Effect of a Commercial Air Valve on the Rapid Filling of a Single Pipeline: A Numerical and Experimental Analysis.” Water 11 (9): 1814.Coronado-Hernández, O. E. , V. S.Fuertes-Miquel, M.Besharat, and H. M.Ramos . 2018. “Subatmospheric Pressure in a Water Draining Pipeline with an Air Pocket.” Urban Water Journal 15 (4): 346–352. doi:10.1080/1573062X.2018.1475578.Fuertes-Miquel, V. S. 2001. “Hydraulic Transients with Entrapped Air Pockets.” PhD diss., Department of Hydraulic Engineering, Polytechnic University of Valencia, Spain.Fuertes-Miquel, V. S. , O. E.Coronado-Hernández, P. L.Iglesias-Rey, and D.Mora-Meliá . 2019b. “Transient Phenomena during the Emptying Process of a Single Pipe with Water-air Interaction.” Journal of Hydraulic Research 57 (3): 318–326. doi:10.1080/00221686.2018.1492465.Fuertes-Miquel, V. S. , O. E.Coronado-Hernández, D.Mora-Meliá, and P. L.Iglesias-Rey . 2019a. “Hydraulic Modelling during Filling and Emptying Processes in Pressurized Pipelines: A Literature Review.” Urban Water Journal 16 (4): 299–311. doi:10.1080/1573062X.2019.1669188.García-Todolí, S. , P. L.Iglesias-Rey, D.Mora-Meliá, F. J.Martínez-Solano, and V. S.Fuertes-Miquel . 2018. “Computational Determination of Air Valves Capacity Using CFD Techniques.” Water 10 (10): 1433. doi:10.3390/w10101433.Hou, Q. , A.Tijsseling, J.Laanearu, I.Annus, T.Koppel, A.Bergant, S.Vuković, A.Anderson, and J.Van’tWestende . 2014. “Experimental Investigation on Rapid Filling of a Large-scale Pipeline.” Journal of Hydraulic Engineering 140 (11): 04014053. doi:10.1061/(ASCE)HY.1943-7900.0000914.Izquierdo, J. , V. S.Fuertes, E.Cabrera, P. L.Iglesias, and J.García-Serra . 1999. “Pipeline Start-up with Entrapped Air.” Journal of Hydraulic Research 37 (5): 579–590. doi:10.1080/00221689909498518.Laanearu, J. , I.Annus, T.Koppel, A.Bergant, S.Vučković, Q.Hou, A. S.Tijsseling, A.Anderson, and J. M. C.Van’t Westende . 2012. “Emptying of Large-scale Pipeline by Pressurized Air.” Journal of Hydraulic Engineering 138 (12): 1090–1100. doi:10.1061/(ASCE)HY.1943-7900.0000631.Leon, A. , M.Ghidaoui, A.Schmidt, and M.Garcia . 2010. “A Robust Two-equation Model for Transient-mixed Flows.” Journal of Hydraulic Research 48 (1): 44–56. doi:10.1080/00221680903565911.Liou, C. , and W. A.Hunt . 1996. “Filling of Pipelines with Undulating Elevation Profiles.” Journal of Hydraulic Engineering 122 (10): 534–539. doi:10.1061/(ASCE)0733-9429(1996)122:10(534).Malekpour, A. , and B. W.Karney . 2019. “Complex Interactions of Water, Air and Its Controlled Removal during Pipeline Filling Operations.” Fluid Mechanics Research International Journal 3 (1): 4‒15.Malekpour, A. , B. W.Karney, and J.Nault . 2016. “Physical Understanding of Sudden Pressurization of Pipe Systems with Entrapped Air: Energy Auditing Approach.” Journal of Hydraulic Engineering 142 (2): 04015044. doi:10.1061/(ASCE)HY.1943-7900.0001067.Martins, N. M. C. , J. N.Delgado, H. M.Ramos, and D. I. C.Covas . 2017. “Maximum Transient Pressures in a Rapidly Filling Pipeline with Entrapped Air Using a CFD Model.” Journal of Hydraulic Research 55 (4): 1–14. doi:10.1080/00221686.2016.1275046.Martins, S. C. , H. M.Ramos, and A. B.Almeida . 2015. “Conceptual Analogy for Modelling Entrapped Air Action in Hydraulic Systems.” Journal of Hydraulic Research 53 (5): 678–686. doi:10.1080/00221686.2015.1077353.Ramezani, L. , B.Karney, and A.Malekpour . 2015. “The Challenge of Air Valves: A Selective Critical Literature Review.” Journal of Water Resources Planning and Management 141 (10): 04015017. doi:10.1061/(ASCE)WR.1943-5452.0000530.Ramezani, L. , B.Karney, and A.Malekpour . 2016. “Encouraging Effective Air Management in Water Pipelines: A Critical Review.” Journal of Water Resources Planning and Management 142 (12): 04016055. doi:10.1061/(ASCE)WR.1943-5452.0000695.Saemi, S. , M.Raisee, M. J.Cervantes, and A.Nourbakhsh . 2019. “Computation of Two- and Three-dimensional Water Hammer Flows.” Journal of Hydraulic Research 57 (3): 386–404. doi:10.1080/00221686.2018.1459892.Tijsseling, A. , Q.Hou, Z.Bozkuş, and J.Laanearu . 2016. “Improved One-Dimensional Models for Rapid Emptying and Filling of Pipelines.” Journal of Pressure Vessel Technology 138 (3): 031301. doi:10.1115/1.4031508.Tran, P. 2017. “Pressure Transients Caused by Air-valve Closure while Filling Pipelines.” Journal of Hydraulic Engineering 143 (2): 04016082. doi:10.1061/(ASCE)HY.1943-7900.0001245.Trindade, B. C. , and J. G.Vasconcelos . 2013. “Modeling of Water Pipeline Filling Events Accounting for Air Phase Interactions.” Journal of Hydraulic. Engineering 139 (9): 921–934. doi:10.1061/(ASCE)HY.1943-7900.0000757.Vasconcelos, J. G. , and S. J.Wright . 2008. “Rapid Flow Startup in Filled Horizontal Pipelines.” Journal of Hydraulic Engineering 134 (7): 984–992. doi:10.1061/(ASCE)0733-9429(2008)134:7(984).Wang, L. , F.Wang, B.Karney, and A.Malekpour . 2017. “Numerical Investigation of Rapid Filling in Bypass Pipelines.” Journal of Hydraulic Research 55 (5): 647–656. doi:10.1080/00221686.2017.1300193.Wylie, E. , and V.Streeter . 1993. Fluid Transients in Systems . Englewood Cliffs, NJ: Ed. Prentice Hall.Zhou, F. , M.Hicks, and P. M.Steffler . 2002. “Transient Flow in a Rapidly Filling Horizontal Pipe Containing Trapped Air.” Journal of Hydraulic Engineering 128 (6): 625–634. doi:10.1061/(ASCE)0733-9429(2002)128:6(625).Zhou, L. , and D.Liu . 2013b. “Experimental Investigation of Entrapped Air Pocket in a Partially Full Water Pipe.” Journal of Hydraulic Research 51 (4): 469–474. doi:10.1080/00221686.2013.785985.Zhou, L. , D.Liu, and B.Karney . 2013a. “Phenomenon of White Mist in Pipelines Rapidly Filling with Water with Entrapped Air Pocket.” Journal of Hydraulic Engineering 139 (10): 1041–1051. doi:10.1061/(ASCE)HY.1943-7900.0000765.Zhou, L. , D.Liu, B.Karney, and Q.Zhang . 2011. “Influence of Entrapped Air Pockets on Hydraulic Transients in Water Pipelines.” Journal of Hydraulic Engineering 137 (12): 1686–1692. doi:10.1061/(ASCE)HY.1943-7900.0000460.Zhou, L. , D.Liu, and C.Ou . 2011. “Simulation of Flow Transients in a Water Filling Pipe Containing Entrapped Air Pocket with VOF Model.” Engineering Applications of Computational Fluid Mechanics 5 (1): 127–140. doi:10.1080/19942060.2011.11015357.http://purl.org/coar/resource_type/c_2df8fbb1ORIGINAL40.pdf40.pdfapplication/pdf114486https://repositorio.utb.edu.co/bitstream/20.500.12585/9503/1/40.pdf8054bef20889f7df4b744cfed51b27d9MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/9503/2/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD52TEXT40.pdf.txt40.pdf.txtExtracted texttext/plain924https://repositorio.utb.edu.co/bitstream/20.500.12585/9503/3/40.pdf.txtaf21fe375250b22ea08234d8ab2f8812MD53THUMBNAIL40.pdf.jpg40.pdf.jpgGenerated Thumbnailimage/jpeg56254https://repositorio.utb.edu.co/bitstream/20.500.12585/9503/4/40.pdf.jpg7b0cc796963a1893ca86c8c4fe685715MD5420.500.12585/9503oai:repositorio.utb.edu.co:20.500.12585/95032023-05-26 09:41:56.804Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=